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Introduction 

Recommender systems (RS) are computational systems aimed at supporting decision-making for 

human users in a given domain. Support is provided by means of recommendations (i.e., 

suggestions), automatically generated by the system, and consumed by the users. The 

recommendation generation procedure is commonly based on a corpus of knowledge consulted 

by the RS in response to a query or as a proactive behavior. 

In explainable RS, users may challenge recommendations by asking for further explanations. An 

explanation consists of additional information to be presented to the user in order to motivate, 

clarify, or compare the recommendation process itself and its outcome. In turn, explanations are 

based on the same domain-specific corpus of knowledge used for recommendations, plus some 

meta-information about the recommendation process. 

In personalizable RS, recommendations are customized to comply with the peculiarities (e.g., the 

profile information, or the preferences) of the particular user consuming them, as well as the 

context the user is situated into. For instance, the same user may query the system twice, at 

different moments in time and get different recommendations, possibly because: 

● the temporal context has changed (e.g., morning vs. evening); 

● the user profile has changed (e.g., different age / weight / BMI range); 

● the user’s preferences have changed; 

● the corpus of knowledge has been updated. 

In Expectation, we are interested in studying the support/impact of Multi-Agent Systems (MAS) in 

Personalizable and Explainable RS (PERS). There, the single RS is modelled as an autonomous 

computational agent encapsulating the strategy for interacting with the user—there including the 

criteria by which personalized recommendations and explanations are drawn for a particular user. 

The value-added of the multi-agent part lies in the fact that, for any given domain, multiple agents 

may be present—potentially, one per user. Each agent would then focus on learning the 

peculiarities of the user assigned to it. However, since the domain is the same, all agents may 

(partially) share their corpi of knowledge. Sharing knowledge is expected to bring benefits in terms 

of the quality of recommendations and explanations. 

Our envisioned approach relies on various sorts of data, to be integrated by agents in their 

recommendation- and explanation-generation processes. Accordingly, in this document, we focus 

on the problem of formalizing the data types and the corresponding data sources and provisioning 

processes. We also discuss how all such kinds of heterogeneous data are integrated by agents 

to derive personalized recommendations and explanations. 

Nutritional PERS: Data Perspective 

Regardless of implementation details, any personalizable and explainable RS would rely on data 

of various sorts. So far, we mentioned: 
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● the users’ queries, as well as the corresponding recommendations and explanations; 

● the domain-specific corpus of knowledge, from which both recommendations and 

explanations are constructed; 

● users’ profile data and user preferences, which should be taken into account to 

personalize any piece of information presented to the user; 

● contextual data (i.e., meta-data enriching user queries with relevant information about the 

situation a query has been issued into). 

In the particular case of Expectation, we focus on the nutritional domain. There, the RS aims at 

helping users follow their nutritional goals (e.g., losing, gaining, or maintaining weight) by 

providing recommendations – and, possibly, explanations – about what to eat when—either upon 

request or autonomously. 

To do so, agents shall rely on a corpus of knowledge consisting of both  

● common knowledge about food, including recipes, cuisines, and their ingredients, and the 

categorization and nutritional values of those ingredients; 

● experts’ knowledge about how to select food w.r.t. a given nutritional goal. 

Furthermore, agents should also collect information about each particular user’s profile (e.g., age, 

height, health conditions, dietary restrictions, etc.) and preferences (e.g., user –U  likes/dislikes 

food – F). While profile information may be provided by users explicitly, preferences should be 

learned by the system dynamically.  

Contextual information may describe for instance when (e.g., time of the day, or day in a dietary 

schedule), or where a given query has been issued. 

Finally, queries may simply represent questions about what a given user U should eat in a given 

context C. Recommendations may consist of food name suggestions (possibly including 

information about how to cook or where to buy food). Explanations may provide details about how 

and why a particular suggestion has been proposed, as well as comparisons with other options 

that have not been proposed. 

Accordingly, in this section, we delve into the details of data sources, schemas, provisioning, and 

workflow concerning the nutritional domain. 

Common-Knowledge concerning Food 

 

Common knowledge concerning food is quintessential to let any RS attain its basic goal, namely: 

recommending food. To serve this purpose, we assume the existence of an architectural 

component – i.e., the food ontology – containing information about all the possible meals, and 

their categorization, ingredients, recipes, and nutrients. 

The food ontology should support several sorts of queries, including, but not limited to: 

● selecting food by the ingredients/nutrients they are composed of; 
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● selecting food by cuisine type or by category; 

● selecting food having (at least, at max, about) some amounts of ingredients/nutrients; 

● selecting ingredients/nutrients corresponding to a given meal; 

● clustering meals having similar amounts of nutrients. 

Notably, queries of these sorts are required by the other components of the RS to construct food 

recommendations. 

In compliance with semantic web principles, Figure 1 structures the food ontology schema. 

 

Figure 1 - Food ontology schema. 

The ontology comprehends a hierarchy of classes representing categorization criteria for food or 

ingredients. The widest possible class is ‘Edible’, which represents anything that can be absorbed 

by the human body as a nutrient. Both ‘Food’ and ‘Liquid’ are sub-classes of ‘Edible’, aimed at 

representing solid and liquid edible stuff respectively.  

Sub-classes of ‘Liquid’ may include beverages (‘Drink’ class), as well as ‘Honey’ or ‘Oil’—which 

are classes too, as there could be several particular sorts of oil or honey. Beverages, in turn, may 
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include ‘Alcoholic’ drinks, various sorts of ‘Milk’ or ‘Vegetal Milk’, various flavors of ‘Water’, energy 

drinks (class ‘Energy’), or ‘Infusion’ beverages—such as ‘Tea’, ‘Coffee’, and so on. 

Sub-classes of ‘Food’ may include both vegetal- and animal-derived food (classes ‘Vegetal’ and 

‘Animal’ respectively), as well as ‘Additive’. Animal-derived food may include ‘Dairy’, ‘Meat’, and 

‘Seafood’, which in turn may include specific sub-classes of products such as ‘Cheese’, ‘Beef’, or 

‘Fish’. More detailed sub-classes have been defined as well, but they are not reported here for 

the sake of conciseness. 

For some sorts of food items, the distinction between solid and liquid is not really relevant. This 

is the case for instance for the ‘Milk’ and ‘Honey’ classes. To model these situations, we exploit 

multiple inheritance. So, for example, both ‘Milk’ and ‘Honey’ are sub-classes of both ‘Diary’ and 

‘Drink’. 

Among the many direct sub-classes of food, one is devoted to keeping track of full recipes and 

their categorization. In fact, the class ‘Recipe’ contains various sorts of recipe names, categorized 

by cuisine. In particular ‘Recipe’ is a sub-class for the ‘Italian’ cuisine, for the ‘Asian’ cuisine, and 

so on and so forth. These sub-classes may have further sub-classes covering particular sorts of 

regional recipes. 

The ontology also keeps track of foot nutrients (‘Nutrient’ class), which may be of three major 

sorts, namely:  

● ‘Macronutrients’ (e.g., carbohydrate, fat, protein, etc.) 

● ‘Mineral’, (e.g., calcium, iron, magnesium, etc.) 

● ‘Vitamins’, (e.g., A, B6, B12, C, etc.) 

Finally, the ontology tracks the properties of food as well. The ‘ingredientOf’ object property binds 

any two edible instances for which the first one is an ingredient of the second one. Conversely, 

the ‘nutrientOf’ object property binds nutrients with the edible instances containing them. In both 

cases, metadata concerning quantities may be provided by means of the ‘quantity’ annotation 

property. So, for instance, food X may be an ingredient of food Y, with quantity Q. It is worth 

mentioning that the ‘ingredientOf’ property is transitive, meaning that if some X is an ingredient of 

Y, and Y is an ingredient of Z, then X is also an (indirect) ingredient of Z. 

Thanks to our food ontology, many queries involved in the recommendation and explanation 

procedures may be reduced to DL queries.  

User Profiles in brief 

Collecting rich user characterizations is quintessential to let any RS generate relevant, yet 
personalized, recommendations. Personalization, in particular, should span several domains, 
including cultural, ethical, and health-related conditions.  

To serve this purpose, we assume the existence of an architectural component – i.e., the user 
ontology – containing information about the users and their profiles. Of course, the ontology is 
only conceptually unified. In practice, while different recommender agents may share the same 
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classes and relations to represent user profiles, the actual data about specific real users is not 
centralized. Rather, we assume actual instances of the ontology are scattered among the many 
recommender agents, in such a way that each recommender agent only stores profile data about 
the user it is meant to provide recommendations to, and no data is shared with other users. 

It is worth mentioning that the focus of this subsection is on user profile data – as opposed to user 
preference data. The distinction among such sorts of data is somewhat blurred. However, we rely 
on the following convention to discriminate. Profile data is, in principle, available ahead of time 
(w.r.t. when a given user starts to use the recommender system): the user is expected to be aware 
of its profile information, and that can be inserted into the system by means of some initial 
registration procedure. Conversely, preference data is very fine-grained, and the user may not be 
fully aware of it at sign-up time. Therefore, it is impractical to request preference data to the user 
during the initial registration phase. Rather, the recommender agent will need to grasp it later, by 
means of further interaction with the user. 

Figure 2 provides an overview of the proposed ontology. The main covered/modelled areas are 
cultural and ethical factors, health and nutrition goals, needs, and preferences.  

 

Figure 2 - User’s ontology for nutritional PERS. 

 

Types of users  

We consider two sorts of users, namely: “nutrition experts” (e.g., nutritionists and doctors), and 

“end users” (i.e., people willing to undertake behavioral change w.r.t. nutrition). 

End users are the primary consumers of nutritional recommendations/explanations. They come 

with relevant (for the RS) profile and preference information, and they are ultimately benefitting 

from the usage of the system itself. 
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Nutrition experts are in charge of designing persuasion strategies and therapies for end users—

there including prescriptions laying outside the scope of nutrition, yet affecting it. These 

prescriptions could be directed towards some specific individual user, or towards idealised user 

archetypes (e.g., "overweight male person, aged 50–60yo, willing to lose weight”, and may involve 

dietary suggestions with a precise scheduling. When inserted into the system by some nutrition 

expert, such prescriptions should affect the recommendation/explanation strategies of all 

recommender agents corresponding to some end user matching the prescription. 

Ontology description:  

End-users and nutrition experts are represented by the User and Doctor classes. Both are 

subclasses of class Person representing people of any sort. Any person is characterized by 

anagraphic data – in the form of properties – such as personal/identification information (e.g., id, 

name, password, email, etc.) and demographic data (e.g., age_range, county_of_origin, living 

country, etc.).  

Doctors may define user categories – i.e., custom groups of users – in order to better organize 

their nutritional plan. To serve this purpose, the ontology contains a class User category. Users 

may belong to user categories. Accordingly, ‘belongs’ (resp. ‘defines’) is the relation biding User 

(resp. Doctor) to User Category. 

Doctors may also assign Users with therapies, to which Users must adhere. This is relevant to 

our nutritional RS because recommendations should take into account the constraints posed by 

those therapies. Accordingly, therapies are instances of class Therapy. This class comes with 

three notable sub-classes, namely: Physical-therapy, Prescription, and Diet. Physical-therapy 

sub-class includes exercise recommendation from physiotherapist for fitness maintenance or for 

recovery from lesion. The sub-class Prescription is a medical document where a licensed 

practitioner orders medicines or therapy. The sub-class Diet is a meal plan that controls the intake 

of food and nutrients.  

Notably, for any given user, our ontology may also memorize physical-therapies, prescriptions, or 

diets coming from experts which are not registered in the system. In fact, even if some of those 

elements are externally defined, it is necessary that both registered doctors and recommender 

agents are aware of them.  

The ultimate purpose of each recommender agent is to help users in reaching their goal (class 

User-Goal). In practice, our ontology discriminates among Nutrition- and Fitness-Goal, the former 

focusing on what the user eats, and the latter on the amount of physical activity performed by the 

user.  

To help the user reach their goal, recommender agents generate recommendations based on 

their Health Condition. This is a class with several relevant sub-classes, for specific sorts of 

conditions, namely Allergy (e.g., egg allergy), Illness, Metabolic Condition (e.g., Hunter 

syndrome), Physical Condition (e.g., overweight), and Mental condition (e.g., Bulimia nervosa). 

Cultural and ethical factors may impact recommendations as well, therefore they come with ad-

hoc classes (namely, Cultural- and Ethical-Factor). Notable examples of cultural factors are 
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religion (e.g., kosher diet) or dietary habits (e.g., vegetarian). Conversely, one notable example 

of an ethical factor is sustainability, which may imply higher priority to local and seasonal food. 

User Preferences and Tastes 

We assume that users' tastes concerning individual edible instances are not explicitly 

represented, as the information is too fine-grained, and users are unlikely to input them manually. 

Rather, we require our recommender agents to be able to eventually learn users' preferences 

sub-symbolically. 

Accordingly, we assume users’ preferences are encoded into ML predictors. In other words, the 

recommender agent has a sub-symbolic component, which is capable of learning users’ tastes 

adaptively, from historical data accumulated by interacting with the user. This component 

assumes data describing the recipes the user likes (or dislikes) are available in appreciable 

amounts. 

Along this line, we let the triplet ⟨𝑢, 𝑟, 𝑝⟩ denote a particular preference of user 𝑢. There, 𝑟 ∈ ℜ is 

a recipe from the class of recipes (here denoted by ℜ), and 𝑝 ∈ ℝ is an appreciation score, 

where positive values represent appreciation, negative values represent dislike, and 0 represent 

neutrality. In other words, the appreciation score encapsulates the user’s opinion w.r.t. the recipe, 

which may be fuzzy. 

Data representing the user’s preferences is assumed to be collected by the recommender agent 

while interacting with the user, as part of its ordinary operation—possibly, via smart or wearable 

devices. In particular, data is exploited by the agent as the training set for its sub-symbolic 

component aimed at learning the user’s tastes. Of course, in doing so, the learning algorithm may 

also access the ingredients- and nutrients-related information stored into the food ontology.  

One key aspect of the sub-symbolic approach is that learning should be continual, in order to 

keep it adherent w.r.t. the user’s preferences—which may evolve over time. Under such 

assumptions, users’ preferences are modeled as a function 

 𝑎𝑝𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛𝑢 ∶  ℜ →  ℝ  

aimed at predicting user 𝑢’s appreciation score for any given recipe.  

In practice, function 𝑎𝑝𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛𝑢 is approximated via a sub-symbolic predictor trained over the 

food ontology and user 𝑢’s data, concerning previous appreciation information—either directly or 

indirectly provided by 𝑢 to its corresponding recommender agent. 

One important engineering aspect concerning the sub-symblic approximation procedure is how 

to model recipes sub-symbolically. Ideally, we want the sub-symbolic predictor to learn the actual 

preference of a user, exploiting the recipes they (dis)like as examples to be generalized. In this 

way, the predictor would be able to estimate the preference of the user, even for recipes that the 

user has never tasted! For this reason, we model the recipe as the set of ingredients it is 

composed of (and their quantities). 
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Accordingly, we denote by 𝛤 the set of admissible ingredients, which we assume to be of finite 

cardinality. Under such hypothesis, we assume all recipes are represented as sets couples of the 

form {⟨𝛾1, 𝑞1⟩, . . . , ⟨𝛾𝑛 , 𝑞𝑛⟩}, where each 𝛾𝑖  ∈ 𝛤 is an ingredient and  𝑞 ∈ ℝ is a quantity value. 

In other words, we consider ℜ ⊆  2 𝛤×ℝ.  

At the coding level, such representation of recipes can be further reduced to vectors of real 

numbers. There, we could denote each recipe as a vector of real numbers of size |𝛤|, where the  

𝑖-th component denotes the quantity of the ingredient 𝑖 in a given recipe—0, by default. Such 

quantities may be computed by propotionalizing the food ontology. 

Experts’ knowledge 

Dietary prescriptions are structured representations of what a given user should eat, and when, 

in order (for the user) to achieve a particular goal. They are commonly produced by nutrition 

experts upon request, and structured around the particular physiological features of the user, 

other than the expert’s background knowledge and experience.  

For any given prescription, the ‘what’ part consists of particular recipes, ingredients, or nutrients 

the user should assume on a per-meal basis, along with the corresponding quantities. Conversely, 

the ‘when’ part indicates the moment of the day the meal should be consumed (e.g., breakfast, 

lunch, dinner, etc.). Finally, the goal is the long-term effect the expert is expecting to produce on 

the body of the user, under the assumption that the dietary prescriptions are followed accordingly. 

The goal should reflect the user's request, but it does not need to be explicitly represented in the 

prescription. 

Considering all the ontological information described so far, prescriptions can be modelled as a 

relation among users, edibles, time slots of the week, and quantities. We call this relation 

“should_eat”. More formally, we let the quartet ⟨𝑢, 𝑒, 𝑡, 𝑞⟩ denote a particular prescription for user 

𝑢, which should eat 𝑞 units of 𝑒 at time 𝑡. In the general case, 𝑞 ∈ ℝ>𝟎 denotes a positive 

measure of the quantity of edible thing to be consumed—this may be weight, volume, or integer 

amount, depending on the nature of the edible thing. Conversely, 𝑡 ∈  ℕ denotes a particular 

moment in time corresponding to a scheduled meal, assuming a discrete notion of time. This 

could be for instance a number from 1 to 21, in case the user is willing to take 3 meals per day 

(breakfast, lunch, dinner) on a weekly basis (7 × 3). 

It is worth mentioning that OWL ontologies do not support quaternary relations. To overcome this 

limitation, we implement the should_eat relation as a binary one (among User and Edible), and 

we require each instance of such relation to be annotated with a number (representing 𝑞) and an 

instance of Meal-Time  (representing 𝑡)—that is, the class containing admissible time-slots for 

meals (e.g.,“monday at lunch”). 

In the real world, dietary prescriptions usually come in a quasi-natural language form or in tabular 

form. In this case, each cell represents a particular moment of the week, and the 
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nutrients/ingredients/recipes (and their corresponding quantities) therein suggested by the expert. 

Therefore, each cell corresponds to one possible instance of the aforementioned “should_eat” 

relation. When this is the case, we assume the existence of a (semi-)automated procedure for 

convering tables into machine-interpretable data, compliant with our ontology. 

Queries, Recommendations, and Explanations 

Roughly speaking, the interaction among a recommender agent and its corresponding user can 

be summarized as follows:  

1. the user sends a query towards the recommender agent (in our case, asking for food 

recommendations), or schedules the recommendation for a later moment in time; 

2. the agent computes a recommendation and sends it back; 

3. the user asks for an explanation concerning the recommendation(s) the recommendations 

they received so far; 

4. the agent provides such explanation(s). 

While the details of this interaction are discussed in the next section, here we delve into the details 

of how queries, recommendations, and explanations are actually represented. 

Queries 

Queries are simple requests of recommendations about what to eat. They may carry additional 

constraints, possibly reifying some contingent desire or need of the user. For instance, the query 

“can you recommend some italian recipe?” is explicitly constraining the search space to Italian 

recipes only. However, queries also carry metadata aimed at contextualizing them. To support 

personalization of recommendation, metadata should at least include information about who 

issued the query, and when—other than, possibly, where.  

So, each query should carry metadata including (i) the identifier of the user issuing the request, 

(ii) an indication of the moment in time when the recommendation should be consumed – e.g., a 

timestamp, or an ordinal value according to the schema discussed in the previous section –, and, 

possibly, (iii) a indication of the position where the user shall consume the recommendation. 

In this way, by means of the user identifier carried by some query’s metadata, the recommender 

system may tailor answers on the particular user issuing the request, customizing them on the 

basis of the profile and preference information available for that user. Recommendations (and 

therefore explanations) may also be enhanced by means of the temporal and spatial indication 

carried by metadata. Temporal indication may be for instance combined with cultural conventions 

about time and nutrition (e.g., some people prefer a salty breakfast over a sweet breakfast, or 

vice versa). Similarly, spacial indications may be taken into account by promoting 

recommendations which can be locally bought.  
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Recommendations 

Recommendations are responses to queries. In our nutritional domain, recommendations aim at 

suggesting edible things to consume. Conceptually, they are simple data structures, i.e.,sets of 

edible things being recommended. However, theory and practice greatly differ in this case. 

In theory, one recommendation is simply a set of identifiers, each one identifying one particular 

item in our food ontology—like, for instance, URLs. However, in practice, the presentation of the 

recommendation plays a crucial role in the user experience of human beings. In other words, 

when showing the recommendation to the user, the mere URL may be poorly effective. The 

recommendation should rather be presented in a catchy way, possibly including concise names, 

pictures, a summary of nutritional values, or steps to reproduce, etc. 

Explanations 

Explanations are details supporting some recommendations. They may be of two broad types, 

namely: 

1. ordinary explanations, which aim at answering the question “why did you recommend me 

this?”; 

2. contrastive explanations, which aim at answering the question “why did you not 

recommend me that instead?”. 

Ordinary explanations are “absolute”, in the sense that they require the recommender agent to 

generate further information motivating some prior recommendation. An explanation of this sort 

may be attained by extracting the decision process which led the agent to propose that 

recommendation and by presenting such information accordingly to the user. Hence, an ordinary 

explanation is an intelligible representation of some decision process whose outcome is affecting 

the user. 

Conversely, contrastive explanations are “relative” to an expectation of the explainee, in the sense 

that they require the recommender agent to compare its recommendation with the one the user 

was expecting. An explanation of this sort may be attained by describing the main differences 

among the two recommendations – in case both are adequate –, or by motivating why one of the 

two is not adequate. 

 

Ordinary Explanations 

In order to generate such explanations, we borrow the concept of post-hoc explanation generation 

from the xAI literature in the form shown in the figure below. The explanations are “post-hoc” 

meaning after the recommendation has been made, a simpler model that is inherently explainable 

and attempts to reason on the outcomes and surrogated model of the black box.  
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Figure 3 - black-back schematization. 

For the explanation generation model, we have utilized decision trees in two manners in which 

we label the data. First, the item-based trees are trees generated from user preferences whereas 

the user-based trees are generated from the opinions of the other users. When we employ the 

user-based explanation generation method, the decision tree is constructed from historical data 

in which recipes are labelled with all users' decisions (i.e., accept or reject). On the other hand, 

the item-based explanation generation approach utilizes the decision tree constructed from a set 

of recipes labelled according to the current user's constraints and feedback. For that tree, 

filtered and low-scoring recipes are negatively labelled (-1), recipes that align with the user's 

constraints are positively labelled (+1) and the rest is labelled neutrally (0). After sorting features 

with respect to their importance, we chose three of them to generate a set of explanations for the 

given recipe. 

After our feature selection, we follow a grammar-based structure to generate sentences from our 

selected features. For instance, if the fiber feature was considered important, then a sentence 

generated from that feature would be: “This recipe is good in fibers”. 

 

 

Figure 4 - Grammar structure of the ordinary explanations 

 

Contrastive Explanations 

For the contrastive explanations, we follow a different strategy. In order to generate a contrastive 

explanation, we must also choose a contrasting recipe (e.g., a recipe that is unfavorable but 

comparable to a given recommendation). To select such a recipe, we select from the pool of 

undesired recipes and compare the features of our recipe and the selected contrastive recipe. 

The features that highlight the positive effects of our recipe are selected to go through a different 

grammar structure. 
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Figure 5 - Grammar structure of the contrastive explanations 

 

 

PERS: Interaction Perspective 

The interaction between one recommender agent and its corresponding user is regulated by a 

precise protocol, discussed in this section. 

The protocol assumes that the user is in charge of initiating the interaction. Hence, the agent waits 

for the user to trigger a query. When receiving a query, the agent should respond by producing a 

recommendation. 

While computing the recommendation, the agent may leverage any information available to it at 

that moment, including the user’s profile, the history of previous interactions, and – possibly – 

aggregated information about other users. Furthermore, it may take advantage of both symbolic 

AI reasoning facilities, and machine learning predictors. 

In response to a recommendation, the user may either simply accept/discard the 

recommendation, or ask for explanations. 

The explanation phase may involve several rounds of interaction, where the user may either ask 

for further details or request comparisons; and the agent attempts to provide all such kinds of 

information. Eventually, enlightened by the explanation process, the user may either accept or 

reject the recommendation. In both cases, the agent may consider the acceptance/rejection of its 

recommendation – as well as the amount of explanatory information provided required by the user 

to reach a decision – as feedback for future recommendations. In the particular case of a rejection, 

the agent may also be interested in the reason for the rejection, so as to improve its 

recommendation and explanation strategy. 

Notably, explanations are always (i) provided upon request, (ii) related to the recommendation, 

and (iii) directed towards the user. Accordingly, our protocol supports both types of explanations, 

and it lets the user decide which type of explanation to request. Of course, the exchanged 

messages may be different depending on the type of explanation requested. 
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Here we propose an abstract formulation of the protocol which is agnostic w.r.t. the particular way 

in which the recommendation and explanation are represented and computed. In other words, we 

only focus on the messages exchanged among explainers and explanees, what information they 

should carry, and in which order they should be exchanged. Accordingly, the protocols rely on 13 

types of messages, which may carry data fields of 5 different types, to be exchanged among 

agents playing 2 possible roles. 

Roles are of course explainee (a.k.a. user) and explainer (a.k.a. agent). The explainee initiates 

the protocol, while the explainer waits for the protocol to be started by the explainee. 

We also identify 5 data types that represent the potential payload that agents may exchange 

during the protocol. As far as the abstract formulation of our protocol is concerned, we do not 

constrain the shape/structure of these types, but we simply assume they exist. In this way, 

implementers of the protocol will be free to define their own specifications for these types, tailoring 

them to their particular application domain. In particular, the data types are: 

● Queries (denoted by Q), i.e., recommendation requests concerning a given topic, issued 

by the explainee when initiating the protocol; 

● Recommendations (denoted by R,R′), i.e., responses to queries, issued by the explainer; 

● Explanations (denoted by E,E′), i.e., chunks of explanatory information issued by the 

explainer to clarify their recommendation; 

● Features (denoted by F), i.e., aspects of the user which are relevant which justify some 

recommendation rejection, which the explainer should memorize and take into account in 

future interactions; 

● Motivations (denoted by M), i.e., reasons for the rejection of a recommendation, which 

may affect how the agent reacts to a rejection. 

Finally, we identify 13 types of messages, which are exchanged among agents playing the 

explainee and explainer roles. We denote messages as named records of the form: 

Name(Payload), where Name represents the type of the message and Payload represents the 

data carried by the message—which consists of instances of the aforementioned data types. 

Payloads consist of ordered tuples of data types, where items suffixed by a question mark are 

optional. Accordingly, message types are: 

● Query(Q) is the message issued by the explainee to initiate the protocol: it carries a 

recommendation request Q; 

● Recommendation(Q,R) is the message issued by the explainer in response to a query: 

it carries the query Q and the corresponding recommendation R computed by the 

explainer; 

● Why(Q,R) is the message issued by the explainee to request an explanation of a 

recommendation: it carries the original query Q and the recommendation R; 

● WhyNot(Q,R,R′) is the message issued by the explainee to request a contrastive 

explanation of a recommendation: it carries the original query Q, the recommendation R, 

and a second recommendation R′, which the explainee wants the explainer to contrast 

with R; 
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● Accept(Q,R,E?) is the message issued by the explainee to accept a recommendation: 

it carries the original query Q, the recommendation R, and optionally the explanation E 

provided by the explainer; 

● Collision(Q,R, F,E?) is the message issued by the explainee to notify the explainer 

that the provided recommendation is colliding with some personal feature/preference of 

theirs: it carries the original query Q, the recommendation R, a description of the feature 

F, and optionally the explanation E provided by the explainer; 

● Disapprove(Q,R,M,E?) is the message issued by the explainee to notify the explainer 

that the provided recommendation is not acceptable for some reason: it carries the original 

query Q, the recommendation R, a description of the reason M, and optionally the 

explanation E provided by the explainer; 

● Details(Q,R,E) is the message issued by the explainer to provide more details about 

a recommendation: it carries the original query Q, the recommendation R, and the 

explanation E; 

● Comparison(Q,R,R′,E) is the message issued by the explainer to provide a 

contrastive explanation of a recommendation, in the case the one recommendation 

proposed by the explainee is admissible as well: it carries the original query Q, the 

recommendation R computed by the explainer and the one R′ proposed by the explainee, 

and an explanation E comparing the two; 

● Invalid(Q,R′,E) is the message issued by the explainer to notify the explainee that 

the proposed recommendation is invalid: it carries the original query Q, the proposed (and 

invalid) recommendation R′, and an explanation E motivating the invalidity; 

● Unclear(Q,R,E) is the message issued by the explainee to notify the explainer that the 

provided explanation is unclear: it carries the original query Q, the recommendation R, and 

the provided (and unclear) explanation E; 

● Prefer(Q,R,R′) is the message issued by the explainee to notify the explainer that they 

prefer a different recommendation: it carries the original query Q, the recommendation R 

proposed by the explainer, and the preferred recommendation R′ proposed by the 

explainee; 

● Override(Q,R,R′) is the message issued by the explainee to notify the explainer that 

want to force the decision to some recommendation which is considered invalid by the 

explainer: it carries the original query Q, the recommendation R proposed by the explainer, 

and the forced recommendation R′ proposed by the explainee. 

The following diagram summarizes the message flow described above: 
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Figure 6 - Message communication diagram between an explainer agent (blue boxes) 

and an explainee (green boxes). Each box represents a message. Each message 

is connected to the ones it can receive as reply. 

Notably, messages are designed by keeping the representational state transfer (ReST) 

architectural style into account—meaning that each message carries all the information needed 

to process it. 

The message communication diagram above depicts not only the messages exchanged by the 

explainee and explainer, but also the admissbile request–response patterns which the protocol 

allows. There, a more detailed view of the message flow is provided, which we briefly summarize 

in the following. The explanation-based recommendation protocol consists in the following phases 

(depth-first traversal of the diagram above): 

1. the explainee initiates the protocol, by issuing a message Query(Q); 

2. the explainer provides a message Recommendation(Q,R) in return; 

3. the explainee may now: 

a. accept the recommendation, by answering Accept(Q,R), hence terminating the 

protocol; 

b. reject the recommendation because of M, by answering Disapprove(Q,R,M); or 

signal it as colliding with F, by answering Collision(Q,R,F). In this case, the 

explainer should propose another recommendation (go to 2.); 

c. ask for ordinary explanations, by answering Why(Q,R). In this case, the explainer 

should propose an explanation, by answering Details(R,E). The explainee may 

now: 

i. accept, reject, or signal R in light of E, by answering Accept(Q,R,E), 

Disapprove(Q,R,M,E), or Collision(Q,R,F,E), respectively, with 

outcomes similar to cases 3.a. and 3.b.;  

ii. ask for a better explanation via Unclear(Q,R,E) (go to 3.c.). 

d. ask for contrastive explanations motivating why not R′, by answering 

WhyNot(Q,R,R′). The explainer may now: 
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i. explain the difference E among R and R′, if R′ is admissible w.r.t. Its current 

knowledge base, by answering Comparison(Q,R,R′,E). Now, the explainee 

may either (in both cases, the protocol terminates): 

1. accept R, via Accept(Q,R,E), or 

2. state that they prefer R′, via Prefer(Q,R,R′). 

ii. explain that R′ is not an admissible recommendation because of E, by 

answering Invalid(Q,R′,E). At this point, the explainee may either (in both 

cases, the protocol terminates): 

1. accept R, via Accept(Q,R,E), or 

2. override the explainer’s decision, by stating that they prefer R′, via 

Override(Q,R,R′)—hence forcing the explainer to update their own 

knowledge base accordingly 

The protocol is general enough to cover multiple relevant situations, corresponding to different 

needs/desires of the users. For instance, users may: (i) simply want a recommendation; (ii) want 

the recommendation to be explained; (iii) want more details for a given explanation; (iv) want to 

simulate other possible recommendations; (v) provide positive or negative feedback about 

recommendations or explanations. 

All such situations correspond to relevant usage scenarios of the protocol. These are briefly 

summarized in the figure below: 
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Figure 7 - . 
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Data Representation and integration of Users’ 

profiles/preferences into PERS 
 

Our architecture leverages upon Horn clauses to represent users’ preferences and experts’ 

prescriptions. In fact, as we show in the remainder of this section, Horn logic lets us simply and 

clearly express dietary prescriptions, while retaining acceptable computational tractability 

features. 

Such formulae may be written by humans and exploited by nutritional RS to suggest actual recipes 

to eat, or, vice versa, they may be generated by some algorithm, and understood by human beings 

as computer-generated prescriptions. 

More precisely, experts prescriptions at time t consist of a set of Horn clauses defining the should 

eat/1 predicate. Such predicate intensively describes what recipes the user should eat at time t, 

by describing admissible (or forbidden) ingredients / nutrients. This is performed via two more 

predicates – namely, has/2 and has no/2 –, which assert what ingredients / nutrients the 

suggested recipe should or should not be composed by. Groups of ingredients / nutrients may be 

defined as well, via unary predicates defined by ad-hoc clauses—e.g., vegetable/1. 

 

Users’ preferences can be represented in clausal form as well. In that case, they consist of sets 

of Horn clauses defining the likes/1 predicate. Similar to prescriptions, such definitions may exploit 

the predicates has/2 and has no/2 too, as well as any other custom predicate defining groups of 

ingredients / nutrients. 

 

Our architecture requires that both users’ preferences and experts’ prescriptions are available as 

sets of Horn clauses. Under such an assumption, it can construct recommendations via logic 

resolution. 

As far as prescriptions are concerned, we assume that experts can produce them in clausal form, 

directly—or, at least, in forms which can be automatically converted into sets of Horn clauses. 

This assumption is easily met by the current practice of providing prescriptions as timetable of 

suggested recipes. 

Conversely, as far as preferences are concerned, the clausal form requirement is clearly 

conflicting with eq. (2), where users’ preferences are modelled as trained sub-symbolic predictors. 

The sub-symbolic representation is adequate, as it enables learning users’ preferences from data, 

and adapting to their change over time. However, such form prevents the direct exploitation of 

logic resolution as the means to construct recommendation. 

Accordingly, to fill the gap, we choose to bring users’ preferences in clausal form, algorithmically. 

To serve this purpose, our architecture leverages upon a SKE step [1], which is in charge of 

extracting symbolic knowledge – in clausal form – out of the sub-symbolic predictor, which has 

been trained to predict users' preferences. Again, we do not impose any particular SKE algorithm 

– meaning that implementers are free to choose the extraction algorithm which is most adequate 

for their needs –, but we do require the extraction step and we require it to output Horn clauses. 
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Explanation Generation Models  

 

Sub-symbolic predictors are able to identify hidden patterns in large amounts of data and 

generalize them to make decisions. Despite their high performance in several complex 

applications, sub-symbolic predictors are usually opaque, making it difficult to understand the 

reasons underneath their decision-making process. To understand the predictors’ decision 

process and to make them trustworthy, it is necessary to provide them with knowledge-based 

explanatory mechanisms. Explainable Artificial Intelligence (XAI) is a field of artificial intelligence 

that aims to explain the predictors' decision process to make them transparent and trustworthy. 

To generate explanations and extract knowledge from sub-symbolic predictors, we have 

developed two main tools and platforms:  

 

1. PSyKE:  PSyKE (Platform for Symbolic Knowledge Extraction) is a knowledge extraction 

library which allows knowledge extraction from various sub-symbolic predictors in tasks 

such as classification and regression employing tabular data. PSyKE employs 

explainable-by-design models (e.g., decision trees) to approximate and describe the 

predictors’ global behavior through first logic rules sets [1]. Rule sets generated by PSyKE 

are expressed in terms of the input features, maintaining their names, ranges and 

semantics. PSyKE employs tabular data (structured data in tabular form, where the 

columns are features and rows are data samples.) 

2. DEXiRE: Deep Explanation and Rule Extraction (DEXiRE) is a knowledge extraction tool 

that explains the internal decision process on deep learning (DL) predictors trained on 

tabular data. DEXiRE’s pipeline is shown in Figure 8 and starts with the predictors’ 

prediction extraction. Subsequently, DEXiRE binarises neuron activations in the 

predictor's hidden layers. Then binary activation patterns from each hidden layer are 

generated employing the train set, and most frequently, patterns per class are identified 

and transformed in Boolean rule sets (intermediate rule sets). Later intermediate rule sets 

are pruned to reduce their complexity and expressed in terms of input features. Finally, 

intermediate rule sets are merged to produce the final rule set that describes the 

predictors' global behavior in terms of input features. Currently, DEXiRE is suitable for 

knowledge extraction on classification tasks with tabular data (e.g., users' preferences, 

food ingredients, snack packaging, and nutritional information.) [2].  

 
Figure 8: DEXiRE’s pipeline [2]. 
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EREBOTS: An agent-based PERS framework 

 

EREBOTS is a multi-agent platform that enables the configuration and deployment of 

personalized chatbots to support users in multi-topic (and multi-campaign) behavioral 

change and health promotion programs. For example, EREBOTS’S conversational agent 

can coach individuals struggling with chronic diseases, addictions, and other health issues 

[4].  

To provide its coaching services, EREBOTS uses and produces a large amount of data 

that is stored in two databases according to data privacy requirements: 

 

● MongoDB: MongoDB is a high-efficient, fault-tolerant No-SQL database which stores 

non-sensitive data such as recipes, ingredients, user feedback to the application, agents' 

states, and current tokens to access chat front-end like Telegram tokens.  

● Pryv: Pryv is a GDPR-compliant No-SQL database that ensures user privacy and security 

through dynamic consent, allowing the user to grant or remove authorization to use their 

data for different applications. Pryv stores all data subject to privacy or ethical criteria, 

including users' profiles, preferences, cultural and religious factors, allergies, and medical 

or psychological conditions. Additionally, Pryv stores the conversational history between 

the virtual coach and the user, the conversations between virtual coaches and other 

agents, and other service messages to synchronize agent behaviors.  

 

 

As illustrated in Figure 9, all the databases (MongoDB and Pryv) employed by the EREBOTS 

platform are deployed in independent containers, isolating them from the rest of the components 

enabling greater flexibility, resilience, and fault tolerance of the system.   

 

 
Figure 9 - EREBOTS architecture and component-interactions diagram.  

 

 

 

Figure 10 indicates the architectural design and data flow in the EREBOTS 2.0 platform. The blue 

box shows the patient agent (PA), a personalized agent that implements three finite state 

machines (FSM), one thematic which constitutes the behavior of the Virtual Nutrition Coach 

(NVC). One persuasive FSM that implements and executes negotiation and behavioral change 
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strategies to ensure the continuity of treatment and sustainability of results. Additionally, the PA 

implements a functional FSM that receives and redirects the messages to the correct FSM, 

updates the agent's state, and initializes additional behaviors. PA employs the user's profile and 

patient's settings to provide personalized recommendations and guidance.  

 

Each user is associated with a unique PA agent (personal coach), and only their associated PA 

can access their private data stored in the Pryv database once the user has consented. This 

ensures controlled access to user data. The Gateway Agent (GA) adapts PA messages to the 

front end (e.g., HemerApp or Telegram). GA does not store or access data.  

 

Figure 10 shows that Doctor Agent is a special type of agent intended to allow doctors (i.e,. 

nutritionists), to manage and monitor the users and their trends. Nutritionits can (via the Doctor 

Agent web interface) create customized or general plans to be executed by PA agents. 

Additionally, Doctor Agent has access to the statistics gathered by PA agents. 

 

Figure 10 - Architectural design EREBOTS 2.0. 
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