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Abstract. As recommendation systems become increasingly prevalent
in numerous fields, the need for clear and persuasive interactions with
users is rising. Integrating explainability into these systems is emerg-
ing as an effective approach to enhance user trust and sociability. This
research focuses on recommendation systems that utilize a range of ex-
plainability techniques to foster trust by providing understandable per-
sonalized explanations for the recommendations made. In line with this,
we study three distinct explanation methods that correspond with three
basic recommendation strategies and assess their efficacy through user
experiments. The findings from the experiments indicate that the ma-
jority of participants value the suggested explanation styles and favor
straightforward, concise explanations over comparative ones.

Keywords: Explainable Recommendations · Explanation Strategies ·
User Studies

1 Introduction

In the rapidly evolving technological environment, our dependence on algorithm-
powered recommendation systems for a variety of decision-making processes is
growing. These systems are used in a wide range of applications, from suggesting
content on movie streaming services to recommending products on e-commerce
platforms. While these systems prioritize the selection and presentation of rec-
ommendations, they often overlook the user’s curiosity about the rationale be-
hind the recommendations. To address this, it is essential to engage users in an
interactive communication setting. This allows users to delve deeper into the
reasoning behind the recommendations, fostering a stronger understanding of
the domain and satisfying their curiosity about the “why” behind the recom-
mendations. This interactive setting necessitates methods for the system and
users to express themselves, akin to a conversation between a sales assistant and
a customer. Enhancing the recommender system’s ability to express itself can
make it more user-friendly, potentially leading to more effective outcomes.

In this context, our study aims to illuminate the workings of food recom-
mendation systems, with a particular emphasis on their use in providing health-
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conscious dietary recommendations. Our primary goal is to enhance the trust-
worthiness and credibility of these food recommendation systems by equipping
them with the ability to offer informative explanations for their recipe rec-
ommendations. To achieve this, we investigate recommendation strategies and
their corresponding explanation generation strategies in two main categories: (i)
model-agnostic explanations and (ii) model-intrinsic explanations. The former
involves generating explanations by examining the results of the recommendation
strategy using a separate model, a process known as “post-hoc” explanation gen-
eration. The latter uses a single model to generate both recommendations and
explanations, making them “intrinsically explainable”. Numerous studies have
experimented with model-agnostic explanations due to the increasing predictive
power of black-box models [27, 1, 7, 28, 18]. However, other research argues that
if the generated explanations are not connected to the model’s decision-making
process, the system cannot be considered transparent [17, 21], implying that ex-
planations and recommendations should not be separated.

In light of this, our study employs and evaluates basic recommendation
strategies from existing literature along with their corresponding explanation
methods. Those explanation strategies can be categorized as tree-based model
agnostic, cluster-based model-agnostic and popularity-based model-intrinsic ex-
planation generation approaches. We scrutinize current approaches for expla-
nation generation, incorporate them into our food recommender system, and
compare the methods through user experiments, assessing user satisfaction and
the effectiveness of the explanations. In the subsequent sections, we first outline
the baseline strategy from the literature, followed by a detailed presentation of
our proposed strategies.

2 Related Work

This section briefly overviews the literature on explainable recommender sys-
tems and different explanation strategies to persuade and convince users about
given recommendations. Recent studies have emphasized incorporating explana-
tions into recommendations to enhance transparency, trust, and acceptability.
For instance, Tintarev and Masthoff investigate various aspects of explanations’
impact, such as transparency, scrutability, trustworthiness, persuasiveness, effec-
tiveness, efficiency, and satisfaction. Experiment results showed that in various
domains especially in low investment domains, providing explanations is likely
to improve these aspects of a recommender system [25]. All of these attributes
enhance the system’s reliability as supported by Gedikli et. al. in which they
assessed varying explanation attributes, including user satisfaction, efficiency, ef-
fectiveness, and trust, by evaluating different explanation styles in recommender
systems via user study responses [9] (e.g., empirically they use response times to
measure explanation effectiveness and subjectively user ratings for user satisfac-
tion). Additionally, Herlocker et. al. investigate the effects of varying techniques
used to explain collaborative-filtering recommendation methods. They follow the
principle of collaborative filtering in their recommendation strategy and show
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ratings of similar users to the underlying user in the form of explanations [12].
They could not reach any concrete outcome according to their hypotheses that
adding collaborative filtering based explanations to recommendation systems
would improve the acceptance of that system and the performance of filtering
decisions within the groups of ordinary users; however, they find out their system
makes it more convenient for an expert to sympathize with a recommendation
(e.g., the group of experts is more fond of the system with higher success in
predictions of user acceptance).

Sharma and Cosley devised a framework to investigate the influence of so-
cial explanations (e.g., explanations that are similar to collaborative filtering in
nature, where they are generated according to a grouping of users, and relat-
ing to other users contextually) within music recommenders [19]. They found
that varying explanations might have different effects depending on the person.
Similarly, Milliecamp explores the visual explanations within the music domain.
They show that users react to explanations depending on their need for cogni-
tion, confidence, sophistication, and visualization literacy. Explanations boost
confidence for those with a low need for cognition and speed up song judgments
for those with higher musical sophistication. Users with lower visualization lit-
eracy tend to judge songs more quickly and precisely [15]. Furthermore, Pu and
Chen develop an explanation interface to investigate the user experience ad-
vantages of using explanations for building trust and to assess whether system
features can contribute to trust-related benefits [16]. They show that users prefer
to re-use systems that offer explanations more often than those that do not, and
users prefer a comparative explanation style where they get a broader view of
available items and respective differences.

Besides, Balog, Radlinski, and Arakelyan present a set-based recommenda-
tion framework that utilizes interrelated features for generating explanations
that account for conditional preferences [2]. Such as liking “Science Fiction”
movies only when it’s about “Space Exploration”. Symeonidis et. al. introduces
a prototype for a movie recommender system designed to gauge user satisfaction
via various explanation styles [23]. They point out that providing an explana-
tion along with movie recommendations will increase the likelihood of a user
estimating its movie ranking while also increasing the number of correct esti-
mations to predict a user’s favorite movie by boosting the user’s confidence in
providing information to the system. Guesmi et. al. showed that users have dif-
ferent goals and may react differently to given explanations [11]. They claimed
through their work that explanations are not a one-size-fits-all solution and that
the explanations should be customized according to the characteristics of the
users. In the following section, we survey the existing explanation mechanisms
for recommenders.

In recent years, ample research has focused on developing model-agnostic
(i.e., post-hoc) explanation generation techniques in machine learning, where
explanations are generated after the predictions are made without requiring
modifications to the underlying model’s architecture or training process. The
goal is to improve transparency and interpretability while not decreasing the
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accuracy of the predictions. Post-hoc explanation generation models often lever-
age feature importance analysis [18], rule-based reasoning [27], gradient-based
attribution [1], or surrogate models [28] to generate meaningful explanations
that can shed light on the factors influencing the model’s predictions. These
explanations help stakeholders gain insight into how the given model makes its
decisions, build trust, and facilitate error analysis [7].

Unlike post-hoc explanations, model-intrinsic techniques focus on generating
explanations directly extracted from the internal mechanisms of the recommen-
dation models. Thus, the generated explanations offer a solid understanding
of the model’s decision-making process. Rago et. al. present a novel graphical
framework, which establishes connections between items and their aspects within
a recommendation system [17]. This framework utilizes Tripolar Argumentation
Frameworks (TFs), an extension of the classical argumentation frameworks, to
represent relationships among the items’ features and the recommendations. TFs
incorporate three distinct types of relations: positive, negative, and neutral, sig-
nifying whether an aspect of an item supports, attacks, or remains neutral to a
recommendation. Through these relations, the users have the flexibility to cus-
tomize their explanations based on their queries. If a user seeks an explanation
as to why an item was recommended, the system can focus on highlighting the
positive aspects of the item (supporters) within the Tripolar framework. Con-
versely, if a user wishes to understand why an item was not recommended, the
system can emphasize the negative aspects (attackers). Shimizu, Matsutani, and
Goto improve the state-of-the-art knowledge graph attention network (KGAT)
by significantly decreasing its computation time, thus allowing more side infor-
mation for generating explanations [21]. Here, KGAT represents the relationships
between users, items, and their side information. Using attention weights to sig-
nify the importance of a node’s or an edge’s influence on a recommendation.
When the model makes a recommendation, it can explain why it made that
particular recommendation by highlighting the nodes or edges in the knowledge
graph that received the highest attention weights.

Recent studies have succeeded in the realm of counterfactual explanations.
These mechanisms aim to provide users with insightful explanations for pre-
dictions by generating counterfactual instances through "what-if" scenarios. It
inquires whether a particular interaction or an attribute of the recommended
item may influence any changes in the recommendation. Tan et. al. extract
aspect-aware explanations by looking for the minimal change in the recom-
mended items’ features such that the item would have not been recommended
anymore; thereby finding the most crucial features for explanations [24], whereas
Tran,Ghazimatin and Roy generate explanations by observing how much the
recommendation changes if certain interactions were missing from the training
dataset [26]. Mainly, they focus on whether their appreciation of an item would
change if they did not experience any particular product before. Table 1 sum-
marizes the related explanation approaches in the literature.
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Table 1: Comparison Matrix of Explanation Approaches
Study Explanation Type Visual

Text Approach Model Agnostic
Intrinsic Domain Dynamic

Static
Guesmi [11] User-Centered Both NLP Model-agnostic Articles static
Buzcu [5] Contrastive Text Decision Trees Model-agnostic Food static
Balog [2] Knowledge-Based Text Knowledge-Based Model-intrinsic Movies static

Shimizu [21] Example-Based
Knowledge-Based Text Knowledge-Graph Model-intrinsic Products static

Tan [24] Counterfactual Text Neural Network Model-intrinsic Movies dynamic
Rago [17] Content-based Text Knowledge-Graph Model-intrinsic Movies static
Tran [26] Counterfactual Text Neural Network Model-intrinsic Products dynamic

Our Approach
Contrastive

User-Centered
Content-Based

Text Clustering
Random Forest Both Food dynamic

3 Recommendation and Explanation Strategies

In this study, we adopt three basic recommendation strategies with aligned ex-
planation approaches.

3.1 Baseline Recommendation and Explanations

Baseline Recommendation Generation is adopted from [3], which relies on fil-
tering and scoring recommendations by considering underlying conditions and
users’ preferences. First, the system filters items (e.g., food recipe, movie) with
respect to the user’s constraints. In turn, the utilities of the remaining candi-
dates are calculated through a scoring function. The items are sorted according
to the computed utilities. The item with the highest utility, which was not rec-
ommended before, is selected as a recommendation, and the system retroactively
generates an explanation in line with the recommendation’s properties/features.
For this baseline recommendation, Buzcu et al. introduce two types of explana-
tion generation methods, which will be explained briefly below.

– Item & User Explanations: A decision tree is constructed from historical
data in which recommendations are labeled with all users’ decisions (i.e.,
accept or reject) in the user-based explanation approach. In contrast, items
are labeled according to the current user’s constraints and feedback in
the item-based explanation generation approach. We can extract the impor-
tance of the features while building the decision tree. This approaches pick
the most important three features to generate an explanation for the given
recommendation.

– Contrastive Explanations: This type of explanations can be generated
by referring a contrastive item, which is an item similar to the chosen one
but fails to satisfy user constraints/preferences. For this purpose, the most
similar item is selected from the aforementioned candidate set of items with
the current recommendation. The features of the selected item with those
of the recommendations are compared one by one. The features influencing
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the user satisfaction positively or negatively are used to build explanations
that highlight the positive side of the recommendation while sending away
the contrastive item by emphasizing its opposing sides.

3.2 Enhanced Baseline Recommendations & Cluster-based
Explanations

Recommendations is decided in a similar way to the aforementioned approach
while explanations are generated by relying on the clustering approach proposed
in [4]. The score function of the recommendation strategy is more comprehensive,
thus we name it the Enhanced Baseline Recommendation. According to this
approach, items are clustered with respect to the user’s estimated preferences
and desires. As usual, it is expected to have similar behavior or pattern in the
same cluster, and someone can inquire which features distinguish those items
in the same cluster from other clusters. In the proposed approach, each item is
represented as a vector of evaluation criteria (e.g., the preference score for food
recommendation). As illustrated in Figure 1, a clustering algorithm is applied
to determine distinguishable items concerning users’ preferences and needs. For
each cluster a separate classifier (Random Forest Classifier) is trained to detect
whether or not the item belongs to underlying cluster. The feature importances,
particularly the most important feature, can be extracted from this classifier to
generate the explanations.

Fig. 1: Process of Clustered-Based Explanation [4]

While generating the contrastive explanations, the most similar item to the
recommended item from another cluster is selected. By comparing the values of
each feature of the contrastive item with those of the recommended item, pos-
itive and negative features are detected. While generating an explanation, the
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recommended item is promoted with the positively contrastive features, whereas
negative features indicate why the system does not suggest the contrastive ex-
ample.

3.3 Popularity-based Explanations

The explanation generation techniques employed thus far have been model-
agnostic, which could result in explanations that do not accurately reflect the
actual decision-making process. This discrepancy arises because the system’s
overall outcomes may need to align better with the individual recommendations
made by the system. In this approach, we utilize a historical dataset capturing
the acceptance of past recommendations and a machine learning approach for
their classification. In particular, a Random Forest Classifier is utilized to gen-
erate recommendations and explanations. Therefore, the proposed structure is
inherently connected to the recommendation process, as both are generated from
the same model. The Random Forest classifier is a valuable choice for popularity-
based recommendation systems because it handles large-scale datasets and pro-
vides robust predictions while being explainable [22]. While making a recom-
mendation, we calculate the probability estimates of each item and sort them
based on the probability of acceptance (labeled as “1”). The recommendation
algorithm combines this knowledge with personalization derived from previous
sections and recommends the recipe with the highest level of probability of ac-
ceptance. On the other hand, we utilize the feature importance generated by the
same Random Forest model in generating an explanation.

Algorithm 1 details the recommendation selection and explanation generation
process. First, we train a Random Forest Classifier using our popularity-labeled
data (Line 1). Then, we calculate the posterior probability for each class (Line 2).
The class labels are acceptable (1) or unacceptable (0). We select the item with
the maximum probability of acceptance (Line 2). This item’s features are then
compared according to the Random Forest model’s feature importance vector.
Finally, the most important feature is selected to construct the explanation (Line
3-4).

Additionally, we utilize the Popularity-based recommendation approach to
generate contrastive explanations befitting the context. Algorithm 2 explains
how contrastive explanations are generated accordingly. First, we extract the
subset of recipes labeled as not recommended by the algorithm (Line 1). Then,
we select the item with the minimum distance in the feature space to the cur-
rent recommendation (Line 2). Finally, we choose the most important feature
according to the feature importance of the Random Forest Classifier (Line 2).

4 Case Study: Food Recommendation

For baseline recommendation strategy, we use the original feature set in [3]
to represent each food recipes as follows: calorie count, fat amount, carbohy-
drates amount, fibers, preparation time, protein amount, preference score. For
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Algorithm 1 Popularity-based Recommendation & Explanation
Require:

F : Features of items;
I: All items,
Ip: Subset of popular recipes that were recommended in previous experiments;
labeled “1” if they were ever accepted or “0” if they were recommended but not
accepted;

Ensure: ϵ: Selected feature; r: Selected recommendation;
1: randomForest← RandomForestClassifier(Ip)
2: R← randomForest.predictproba(I)
3: r ← argmaxR[1]
4: ϵ← max(randomForest.featureImportance(F )
5: return ϵ, r

Algorithm 2 Popularity-based Contrastive Explanation Selection
Require:

F : Feature set of Popularity;
Pu: Users feature preference weights;
I: Set of scored items;
i: Recommended item;

Ensure: ϵ: Explanation feature; r′: Contrastive item;
1: C ← R[0]
2: r′ ← argminc∈C distance(c, r)
3: ϵ← argmaxf∈F featureImportance(r)
4: return ϵ, r’

our clustered-based recommendation strategy, we consider a vector of preference
score, health score, price score, time score, and taste score with respect to the
user profile since those scores captures users’ preferences more comprehensively.
For the popularity-based strategies, we have conducted an additional experimen-
tal study to gather a labeled dataset where if any user ever accepts them, the
recommended recipes are labeled as “1”; otherwise, they are labeled as “0”. Note
that the recipes that were never recommended are excluded from the dataset. We
applied one-hot encoding to the features (e. g., flavors of food, meal type, price,
and cooking style) to classify them accordingly. We utilized this data to train a
Random forest classifier to predict whether a recommendation will be accepted
or rejected by the user based on its popularity label in those experiments.

In the following part, we explain how aforementioned scores are calculated
to suit the clustering technique used in our user experiments as features.

Preference Score: To calculate the preference score of a user for the recipe
dataset, we utilize a novel Active Learning framework [6] that is proven effective
within our research project. The system first generates a diverse sample of recipes
from the dataset. It asks the user to specify whether they like or dislike a given
recipe. Afterward, the system shows a set of recipes to the user. The participants
are asked to indicate the correct labels for the predictions made by the system
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by adjusting whether they like its respective features or not. This user feedback
is utilized to generate synthetic data to enrich the user’s preference data and
increase the system’s accuracy with a small dataset. Ultimately, the labeling
generated from this process is used to train a supervised learning model, Logistic
Regression. We use the positive class probability by the model as the indicator for
the user preference score for a given recipe, which corresponds to the likelihood
of user’s acceptance of a recipe.

Health Score: In order to calculate the health score, we follow intuition,
where we take the user’s personal information to calculate their nutritional needs
in a day. The final healthScore is the mean of calorieScore and respective nutrient
scores for each nutrition value of the recipe. To calculate the calorieScore we use
the daily active metabolic rate (AMR) described in the literature [5] and the
final score is derived as described in Equation 1 where R corresponds to a recipe
within the dataset. Essentially, we constrain the calorie score within the range
of [0, 1], and we assume that a higher amount of calories is better as long as
it is less than the active metabolic rate. For the nutrient scores, we use the
nutrient density score [8] as described in Equation 2. To simplify the healthiness
decision, each nutrition is scored higher if they have a higher density per calorie
except for the amount of fat, which is reversed (1 − fatScore). The wnutrient

corresponds to the pre-defined weight for each nutrient. Currently, all the weights
are equal given our use-case does not define a distinction for nutrient importance.
Finally, all scores are clamped to the [0, 1] range, then averaged to derive the
final healthScore.

calorieScoreR =

{
Rcalories

maxcalories
, if caloriesR ≤ AMR

0, else

}
(1)

nutrientScoreR =
amountnutrient(gr)

caloriesR(kcal)
(2)

healthScoreR =
∑

nutrient

wnutrient ∗ scorenutrient (3)

Price Score: We first label the recipes within three classes; cheap, standard
and expensive (labelled as $, $$, $$$ in order). We assume that the cheaper is
better for a given food recipe, therefore, we assign these classes the scores of 1,
0.67, 0.33 respectively.

Time Score: The time scores are a summation of the recipes preparation
and cooking time. For the calculation of this score, we assume that the quicker
is better. Therefore, we apply max-normalization on the time of preperation in
terms of minutes and reverse the order of scores for all the recipes. Thus, the
quickest recipe is scored as “1”.

Taste Score: The taste score corresponds to how well the flavor preferences
of the user matches the flavor profile of a recipe. The flavor profile is comprised
of the following tastes: Savory, Bitter, Sour, Salty, Sweet and Spicy, which are
recognized as the main tastes the humans can distinguish [10]. Each food recipe
holds boolean fields for the dimensions of a flavor profile. Table 2 shows an
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example recipe where each taste is labelled “1” if it is a part of the profile, or
“0” if it is not. Finally, we ask user to elicitate their desired tastes in the same

Table 2: Flavors of a Tomato Soup
Recipe Savory Spicy Sour Salty Sweet Bitter
User Profile 1 1 1 1 0 0
Tomato Soup 1 0 1 1 0 0

form (e.g., they mark whether or not they want it in a boolean fashion). For
each recipe, we apply the Jaccard Similarity [13] as described in the Equation 4
to calculate the final score within the range of [0, 1].

tasteScoreR =
flavorsR ∩ flavorsuser
flavorsR ∪ flavorsuser

, (4)

5 Evaluation

In order to thoroughly evaluate the proposed explanation generation strategies
we conducted user experiments via a Web-based interface for food recommenda-
tions 4. The experimental setup is presented in Section 5.1, consecutively, Section
5.2 reports and discusses the experimental results elaborately.

5.1 Experimental Setup

Prior to commencing the experiments, each participant was required to fill out
a pre-survey and registration form, wherein they provided details about their
gender, age, height, weight, level of physical activity, dietary preferences, and
any allergies they might have. Additionally, they were asked to rank food re-
lated factors, and their taste preferences. The system utilizes this information
to score the recipes respective to each participant’s healthiness and preferences
(Section 4). To evaluate the acceptability and effectiveness of the explanation-
generation techniques proposed, we conducted a study involving participants
experiencing three iterations of food recipes, each accompanied by three ex-
planations. The system presents a recipe each time in the following order of
recommendation strategies: (i) Baseline Recommendation (Section 3.1), (ii) En-
hanced Baseline Recommendation and respective explanations compatible with
the recommendation strategy (Section 3.2), and (iii) Popularity-Based Recom-
mendation (Section 3.3):

4 The user experiments in this study was reviewed and approved by the Ethics Com-
mittee of Özyeğin University, and informed consent was obtained from all the ex-
periment participants.
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– Baseline Recommendation: We use the following explanation methods: Item-
based, User-based and Contrastive explanations (Section 3.1).

– Enhanced Baseline Recommendation (Section 3.2): We employ the following
explanation methods: Cluster-based, Contrastive Cluster explanations, and
Enhanced Item-based Section 3.1.

– Popularity Recommendation (Section 3.3): We apply the following expla-
nation methods: Popularity-based, Contrastive Popularity, and Popularity
User-based (Section 3.1) explanations.

Here, we adapted the User and Item-based explanation generation strategies
described in Section 3.1 to generate explanations with the proposed recommen-
dation strategies and their respective features. Afterward, the participants were
asked to provide feedback on the perceived performance (effectiveness and con-
vincability) of these explanations using a 5-point Likert scale. After completing
the rating of the explanations, the system asks the user to choose their fa-
vorite recipe among the shown recipes with respective explanations. This design
choice was based on research suggesting that users make better-informed deci-
sions without experiencing excessive cognitive load when selecting from three
items simultaneously [20]. As shown in the Figure 2, the user can easily view
nutritional information, recipe ingredients, and various explanations. However,
the food’s picture and detailed recipe information are not immediately visible,
but the user can still access them by clicking the respective buttons, similar to
earlier studies. After concluding the experiment, the participants are requested
to complete a questionnaire consisting mainly of 5-point Likert scale questions.
The questionnaire aims to assess their experiences with the explanations pro-
vided by the system. Participants are shown an explanation generated by the
system and asked to respond to seven questions designed to gauge the effective-
ness and success of the explanations they received.

In total, there are 80 participants (25 female, 55 male) with diverse back-
grounds and age groups took part in the test (mean 24.70, min: 18 and max:59).
The participants were requested to order the importance of five criteria, relative
to a given food recommendation: “Nutritional factors”, “Past experience with
taste”, “How it looks”, “Price of the ingredients”, and “Cooking style”. Partici-
pants were asked to rate various factors on a scale from 1 to 5, with 1 indicating
the highest importance. The results show that a significant portion of the partic-
ipants (specifically, 46%) considered their experience with the taste of such food
to be the most critical factor influencing their cooking recipes. Additionally, 35%
of the participants prioritized the healthiness of the food as their top concern.
Conversely, 41% of the participants considered the time required to prepare the
recipe the least important factor. In contrast, 28% of the participants rated the
food price as the least significant factor in their decision-making process. The
dataset used in the experiment is acquired from Diyetkolik and it is comprised of
1382 recipes, where 210 of them were recommended to the users. In total, 125 of
those recipes were accepted by the users cumulatively from previous studies [3].
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Fig. 2: User Interface for Recipe Selection Step

5.2 Experimental Results

The experimental setup is mainly comprised of experiment participants provid-
ing subjective input on explanations offered to recommendations. We applied
the Repeated Measures ANOVA statistical test rejected the null hypotheses,
which revealed a significant difference among the types of explanations (F=3.71,
p=0.0003). For furter analysis, the data, as determined by the Kolmogorov nor-
mality test, does not conform to a normal distribution, a crucial assumption for
conducting pairwise T-tests. Consequently, we opted for the appropriate non-
parametric alternative, the Wilcoxon signed-rank test [14], for our statistical
tests. In all our analyses, we set the Confidence Interval (CI) to 0.95, corre-
sponding to a significance level of α = 0.05. Our test results comprised of user
responses to explanations are first analyzed by the recommendation strategy.

We conducted pairwise tests between these groups, yielding the following re-
sults: Enhanced Baseline vs. Popularity Recommendation (p = 0.13), Enhanced
Baseline vs. Baseline Recommendation (p = 0.44), and Popularity vs. Baseline
Recommendation (p = 0.04). One could notice that the explanations generated



Evaluation of the User-centric Explanation Strategies 13

along the Popularity-based recommendation have underperformed compared to
the ones generated with the baseline recommendation strategy, as seen in Fig-
ure 3a. Before drawing such conclusions, we must look into further analysis.
Additionally, we categorized explanation generation techniques based on their
underlying differences and the form of labelling strategy they utilized.

– Item Based: Methods that utilize an item’s attributes on-line (Basic Cluster,
Enhanced Item-based, and Item-based).

– User Based: Techniques that use historical data (user acceptance) as labeling
(Popularity, Popularity User-based, and User-based).

– Contrastive: Explanations that are in the contrastive form (Contrastive Clus-
ter, Contrastive Popularity, and Contrastive).

(a) Recommendation (b) Explanation Generation

Fig. 3: Avg. Scores of Explanations Grouped per Technique

We conducted pairwise tests between these groups, leading to the following
outcomes: Contrastive vs. Item-based (p = 0.02), User-based vs. Item-based
(p = 0.84), and Contrastive vs. User-based (p = 0.02). Observing Figure 3b,
we note that the contrastive explanations under-performed slightly compared
to the other methods statistically. We notice a trend where the participants
prefer explanations based on the attributes of the recommended item more. The
participants did not appreciate both contrastive explanations and popularity-
based metrics, potentially pointing to the fact that users care more about facts
on their recommendation than comparative explanations.

Subsequently, we conducted pairwise tests to compare different types of ex-
planation generation techniques within the same recommendation strategy indi-
vidually as follows:
Popularity-Based Recommendation:

– Popularity vs. Popularity User-based (p = 0.70)
– Popularity vs. Contrastive Popularity (p ≤ 0.0001)
– Contrastive Popularity vs. Popularity User-based (p ≤ 0.0001)
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Enhanced Baseline Recommendation:

– Cluster vs. Enhanced Item-based (p = 0.78)
– Cluster vs. Contrastive Cluster (p = 0.13)
– Contrastive Cluster vs. Enhanced Item-based (p = 0.16)

Baseline Recommendation:

– Item-Based vs. User-Based (p = 0.92)
– Contrastive vs. Item-Based (p = 0.44)
– Contrastive vs. User-Based (p = 0.31)

These results provide insights into the comparative performance of explana-
tion techniques within each recommendation strategy. The significant p-values
(highlighted) indicate noteworthy differences deserving further investigation. We
note that only in popularity group that the contrastive explanations significantly
under-perform as shown in Figure 4. In other recommendation groups, there is
no significant results observed.

(a) Popularity Based (b) Cluster Based (c) Baseline

Fig. 4: Avg Scores of Explanations by Recommendation

Additionally, the distribution of accepted recipes are (i) Baseline recommen-
dation 38%, (ii) Enhanced baseline 32% and (iii) Popularity-based 30%. Our
take-aways may be further supported by this outcome given the simplest method
of recommendation seems to be favored more than the others. However, this may
be just a result of combination of explanations and the food recipe being more
fitting to the users.

Moreover, we conducted an analysis of user responses to the post-experiment
survey to assess their perceptions of the given explanations. Since each par-
ticipant was given each form of explanation during the experiment, and the
survey questions as well as the provided examples of the types were identical
for all participants, we employed a within-subjects statistical comparison test.
Figure 5 shows the average responses to the questionnaire questions, as well as
the questions and respective explanations.

Table 3 shows the Wilcoxon paired test results for each type of explanation for
each question. We observe significant differences between pairs of explanations
on Q2, Q3, Q4, Q5 and Q6 whereas there is no significance within explanation
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Id Label
Q1This type of explanation for recommendations has helped me choose the most convenient recipe.
Q2This type of explanation for recommendations were too detailed.
Q3This type of explanation displayed during the interaction were satisfactory.
Q4This type of explanation for recommendations were clear and easy to understand.
Q5This type of explanation were sufficient to make an informed decision for healthiness.
Q6This type of explanation were realistic in terms of healthiness of given recipes.
Q7This type of explanation let me know how convenient the recipe is.
Q8Rate your appreciation of the idea of receiving this type of explanations in addition to recom-

mendations.
E1 Popularity-based explanation sample
E2 Cluster-based explanation sample
E3 Baseline explanation sample
E4 Contrastive explanation sample

Fig. 5: Questionnaire Responses About Explanations

pairs for Q1, Q7 and Q8. The Q3 tells us that baseline explanations were the
most satisfactory explanations, it is also the simplest explanation generation
method. One could draw the conclusion that the participants favor simplistic
methods over complicated ones. This finding is further supported by Q4, where
contrastive explanations were found too complicated and the fact that they were
rated lowest among the explanation types. The simpler explanations were found
to be more effective in coming to healthy decisions, as it is seen from Q5. Finally,
Q8 shows us that the users would still use this system despite it’s short-comings
with no significant difference among pairs of explanations.

Table 3: Pairwise Wilcoxon Test Results
P-Value Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8
E1 vs E2 0.565 0.045 0.549 0.679 0.007 0.063 0.294 0.909
E1 vs E3 0.986 0.683 0.010 0.573 ≤ 0.000 ≤ 0.001 0.902 0.579
E1 vs E4 0.878 ≤ 0.001 0.426 0.001 0.003 0.012 0.859 0.635
E2 vs E3 0.524 0.053 0.034 0.621 ≤ 0.001 ≤ 0.001 0.498 0.475
E2 vs E4 0.855 ≤ 0.001 0.638 ≤ 0.001 ≤ 0.001 ≤ 0.001 0.284 0.751
E3 vs E4 0.656 ≤ 0.001 0.017 ≤ 0.001 0.023 0.001 0.641 0.228
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6 Conclusion

In conclusion, this research contributes to the ongoing dialogue about incorporat-
ing explanation generation strategies into recommendation systems, especially
those focused on health-aware recommendations. As we search to enhance the
transparency and effectiveness of recommendation systems, we find that user-
centrism, simplicity, and clarity are crucial for effective explanations. Despite
these findings, it is important to acknowledge that the effectiveness of explana-
tion strategies may vary depending on the specific user, rather than the collective
user opinion on recommendation items guiding explanations. This study does
not particularly focus on a group of individuals and it involves participants from
diverse backgrounds and dietary preferences. Such diversity could affect their
perspectives on the styles of explanations. Future studies could delve deeper
into fine-tuning the explanation strategies toward user profiles and preferences,
where we offer different styles of explanations at varying degrees to diverse pro-
files of users.
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Abstract. This study examines the effects of communication channels
on user engagement, acceptance, and satisfaction within a personalized
food recommendation system, that provides explanations. We tested two
conditions: a tablet Web interface and a humanoid robot along with a
tablet. Our findings demonstrate that, despite occasional user frustra-
tions with the robot’s slower response time and overall interaction style,
the robot’s presence enhances the social perception of the interaction.
Overall, the results suggest potential for socially interactive robots.

Keywords: XAI · Food Recommender Systems· Human Robot Interac-
tion · Effect of Communication Medium

1 Introduction

With the increasing integration of artificial intelligence (AI) technologies into
everyday life, there is a growing demand for systems that not only provide pre-
cise recommendations but can also deliver transparent, understandable expla-
nations [4]. Explainable AI (XAI) has been employed to address this need by
making complex algorithmic processes more accessible to the end-user, thus pro-
moting user trust and understanding [2]. However, explainability alone does not
compose the effectiveness of the content, but also how the explanations are com-
municated plays a crucial role in how users perceive, engage with, and ultimately
accept these recommendations [7]. Previous research has shown that physical
presence of a robot can increase user engagement by providing a richer, more
interactive experience that fosters a sense of connectedness [13]. Moreover, there
is a notable effect of different communication channels (e.g., physical embodi-
ment versus purely digital) for users’ within personalized meal recommendation
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systems [15]. However, there is still a gap in understanding how embodiment
translates to practical applications, particularly in scenarios where complex, per-
sonalized information needs to be communicated efficiently and effectively. To
investigate this, we have developed two different interface configurations: (i)
one based on a standard Web interface accessible with a tablet, and (ii) an-
other that complements this tablet interface with a humanoid robot capable of
providing food recommendations along with explanations through speech and
gestures. The robot introduces physical embodiment and aims to create a more
human-like interaction by utilizing multi-modal communication. By examining
user reactions and interactions with both systems, we aim to determine whether
physical embodiment influences user engagement and affects perceptions of the
recommendations, including acceptance and satisfaction with the system.

The remainder of the paper is organized as follows. Section 2 presents related
work. Section 3 describes the set-up of the study, detailing the components and
configurations used. Section 4 provides an evaluation and discussion of the ex-
perimental results. Section 5 concludes the paper and suggests future research.

2 Related Work

The increasing adoption of artificial intelligence in day-to-day applications has
developed an interest in understanding the most effective ways to deliver per-
sonalized and explainable recommendations. In particular, research has focused
on the communication mediums: the means of presenting the recommendations
and corresponding explanations to the user. Various communication mediums,
such as Web-based systems [9, 4, 12] and mobile interfaces [3, 16, 14], have been
studied for their effects on recommender systems. Moving beyond these conven-
tional mediums, recent research has focused on robots as a promising alternative
for recommendation delivery, particularly in scenarios where physical presence
may improve effectiveness with enhanced user engagement.

Kamei et al. [9] experiment with robots recommending items based on cus-
tomers’ purchasing behaviors tracked by networked sensors in a shop. Using mul-
tiple robots, they show that participants lingered longer near shelves when robots
interacted with them, often mirroring previous purchasing behaviors. Herse et al.
[6] investigate embodiment’s role in social robots’ persuasiveness within a service
setting. They conduct an experiment comparing a human, robot, and kiosk for
restaurant recommendations. The results reveal that human-like embodiment
enhances persuasiveness, though only with specific recommendation phrasing.
They suggest human-like traits can boost recommendation impact, with a de-
pendence on the choice of language. Sakai et al. [15] conduct an experiment
with robots in a both virtual and embodied setting with visitors in conversa-
tions about food preferences before recommending dishes. While behavioral dif-
ferences were minimal, the study found that physical robots notably improved
satisfaction and agreement with recommendations, suggesting that embodiment
has a positive impact on user engagement. Interestingly, in our setting, user en-
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gagement is higher when participants interact solely with a conventional tablet
interface compared to when they interact with the robot and tablet together.

Embodiment research also takes place in education and negotiation. Çakan
et al. [5] study the difference in negotiation styles, when interacting with virtual
robots and physically embodied robots. Human participants took the negotiation
more seriously against physically embodied robots and made more collaborative
moves in the virtual robot setting. Survey responses indicate that participants
perceived the robot as more human-like when it is physically embodied.

Köse et al. [11] investigate embodiment and gesture effects in child-robot in-
teractions with a child-sized humanoid robot in an interactive drumming game.
They studied three forms of communication: (i) direct interaction with an em-
bodied system, (ii) a sound only, and (iii) a real-time virtual avatar. Through
mixed-design measures, data from the experiments reveal that physical embod-
iment, especially with gestures, significantly enhances interaction quality, per-
formance, and user enjoyment. Ultimately, a physically embodied robot with
gesture capabilities, enhances the perceived intelligence of the agent and im-
poves engagement in human-computer interactions. In a similar set-up Keskin
et al. [10] compared various forms of embodied negotiation opponents, to test
the hypothesis that the appearance of the robots would change participants’
impressions and attitudes. Ultimately, it did not alter the final session results.

In contrast, our study focuses on recommender systems. We examine how
explainable recommender systems are experienced through different interfaces,
namely a conventional tablet and a robot combined with a tablet, and how these
interfaces affect user engagement, satisfaction, and overall system performance.

3 Research set-up and Hypotheses

In this study, we utilize the personalized explainable recommendation framework
developed by Buzcu et al. [4], designed to support users in making food choices
that meet both health requirements and personal preferences. The interaction
between users and system is governed by the protocol illustrated in Figure 1.
The interaction is initiated by a user request consisting of several constraints and
the system provides an explanation along with the given recommendation. The
user can provide feedback about recommended recipes and their corresponding
explanations or end the interaction by either accepting or terminating the session
without any agreement. With the given feedback, the recommendation strategy
revises its recommendation, thus engaging in a subtle negotiation. This process
lasts until they reach a termination condition.

The recommendation generation process begins with filtering. The system
processes each user’s dietary restrictions, allergies, and ingredient preferences
and filters out items that don’t align directly. For instance, vegan users will only
receive plant-based recipes. This filtering is enabled by an RDF ontology-based
database, which defines complex relationships between food entities and user
dietary restrictions to refine the available choices to meet each group of users’
requirements. The system evaluates the remaining items using a multi-criteria
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Fig. 1: FIPA description of the Negotiation Protocol where C corresponds to the
user constraints, R is a recipe recommended by the agent, and ϵ is an explanation
that comes with the recipe.

utility function, which rates each option based on (i) Nutritional Value, (ii)
Active Metabolic Rate (AMR) and (iii) User Satisfaction Scores. Ulti-
mately, these scores are combined via their respective weights to calculate an
overall additive utility score for each item, which determines a heuristic ranking
among the filtered options. The highest-ranked item that hasn’t been recently
recommended is then selected to be recommended. The system generates post-
hoc explanations to clarify the reasoning behind the choice from the selected
recommendation. This step includes two types of explanations:

– Item & User-Based Explanations: Using historical data, a decision tree
is constructed to identify the key features that influenced the recommenda-
tion in a post-hoc manner.

– Contrastive Explanations: The system compares the chosen item with
a similar alternative that didn’t meet the decision criteria or was filtered
otherwise. This contrast is used to show why the recommended item is the
a more preferable option by highlighting features.

So far, Buzcu et al. [4] has implemented the Recommendation Framework
with a Web Interface. Figure 2 shows the Web Interface as in the recommenda-
tion state. The Web Interface provides a medium for users to interact with the
recommender system with the means of allowed actions in the protocol (see Fig-
ure 1). The Interface allows users to see recommended recipes in detail (e.g. name
of the recipe, recipe ingredients, nutritional information) along with the explana-
tion of the recommendation and give feedback about both recommendation and
explanation. The recipe feedback section consists of options and the recipe in-
gredients. Users can pick the appropriate option (e.g. “I don’t like...”, “I ate the
following recently...”) with preferred ingredients. The explanation feedback can
also be given by selecting the preferred option in the explanation feedback sec-
tion. Users have three options to respond to the given recipe: (i) Accepting the
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recommendation and ending the session, (ii) Submitting the feedback
and requesting new recommendation,(iii) Terminating the session.

Fig. 2: Tablet Web Interface

Apart from the content of the explanations, how they are delivered also
plays a crucial role in their effectiveness. Therefore, it is essential to investigate
which communication medium/modality would establish more effective interac-
tion with the user when building personalized explainable systems. This study
mainly focuses on personalized explainable food recommendation systems and
examines the effect of communication medium/modality (i.e., the effect of phys-
ical embodiment and textual/speech-based communication). Consequently, this
study aims to investigate the following research hypothesis through user stud-
ies. For sake of readability, hereafter, tablet (touch-screen-based devices) only is
referred to as a conventional interface.

– Hypothesis-1 (H1): Incorporating a physically embodied robot into an
explainable food recommendation system affects user engagement. (Metric:
Amount of User Feedback)

– Hypothesis-2 (H2): Incorporating a physically embodied robot into a con-
ventional interface shifts the original recommendation perception and accep-
tance. (Metric: Recommendation Acceptance Rate)
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– Hypothesis-3 (H3): Interacting with a physically embodied robot with a
conventional interface could result in different satisfaction levels with the
personalization of recommendations compared to conventional interfaces.
(Metric: Qualitative User Feedback)

Accordingly, we compare two settings in which the user interacts with the
system via only a tablet (only visual and textual data is delivered) in one set-
ting, whereas they interact with a QT robot via speech in addition to the use
of a tablet. Note that we utilize the same strategies for recommendation and
explanation generation in both settings. Ultimately, we aim to study user en-
gagement, acceptability of the explanations, and communication effectiveness by
comparing the interactions with the user when the explanations are delivered by
a tablet-based medium or a physical humanoid robot with a tablet interface.

4 Experimental Evaluation

In this section, we first introduce our Methodology (Section 4.1) and discuss our
results with the experimental settings (Section 4.2, and Section 4.3).

4.1 Methodology

In order to test our hypotheses, we utilize a QT robot6 supporting various in-
teraction services such as text-to-speech, speech-to-text, emotions display and
gestures. Human-robot interaction requires speech communication, emotions and
gestures to capture the users’ attention and create a more human-like interac-
tion. On the other hand, grasping the provided material within the dialogue and
reasoning them may require some visual deliverables. That is, if we provide the
same context in the form of visual and textual, it might be easier for a human
user to evaluate. While determining what content should be delivered in textual
format via tablet and what content to be delivered by the robot via speech, we
conducted a pilot user study where the users give feedback about the effective-
ness of communication. We observed that users had difficulty in understanding
the details of the given recipe or keeping in mind the related details affecting
their decisions. We found out that utilizing speech-based dialogue for short ex-
planations and structured user feedback creates a rapport between system and
users. Therefore, we employ the speech-base interaction for the following tasks:

– Greeting the user (e.g. “Hello! My name is QT. I am a nutritionist! I am
here to help you about your food selection! Can you hear me?” )

– Providing the name of the recipe and its corresponding explanations verbally
(e.g. “Great! I can hear you too! Now I recommend you Meatless Potato
Meal. Because I think this culinary marvel brings delight as an affordable
option. Did you like this recipe?”).

– Receiving structured feedback (e.g. “I am curious to hear your thoughts!
Would you like to give me a feedback before we continue?” ).
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(a) (b)

Fig. 3: Robot with Tablet Session Setup and Tablet Interface

On the other hand, the content of the full recipe is displayed on the tablet
screen as shown in Figure 3b so that the users can asses the recommendation.
Moreover, the robot also uses gestures and expresses feelings, emotions via fa-
cial expressions alongside the recommendations to add human-likeliness to the
system for a more fluent experience. Furthermore, the user can track the interac-
tion states from the tablet interface by displaying the speech recognition outputs
simultaneously and options for structured explanations. It is worth noting that
both settings (Only Tablet versus Robot and Tablet) provide the same content
to the users. The only difference is that some of the visible content changes with
the interaction state in the robot setting, while all information is displayed on
the tablet in the only tablet setting.

4.2 Experiment Setup

The primary objective of our experiment is to analyze the effects of different
communication channels on the efficiency of the recommender system. As de-
scribed above, we have two communication settings of our food recommender:
QT Robot with tablet and Only Tablet. Therefore, our study comprises two sub-
ject groups; one only experienced the tablet, whereas the other experienced the
robot with the tablet in order to get a food recipe recommendation along with
its explanations. We employ between-subject design for our experimental setup
to reduce (i) learning effect, (ii) cognitive overload, and (iii) comparison bias so
that each participant interacted with only one setting. During our experiment,
each participant goes through the steps depicted by Figure 4.

1. Pre-Experiment Survey: Participants fill out a survey to provide demo-
graphic information and their initial perceptions of robots and technology.
This survey includes questions about age, gender, education level, and fa-
miliarity with technology.

6 https://luxai.com/humanoid-social-robot-for-research-and-teaching/
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2. Experiment Sessions: Participants (i) are informed about the underly-
ing setting through a brief explanatory video, and (ii) practice with a short
demo version to familiarize how to interact with the system effectively. Then
they start the experiment choose a food preference profile from a pool of
predefined profiles (e.g. vegetarian, fast-food lover, sports). According to the
chosen profile, the system makes recommendations along with their expla-
nations. Note that the content of the recommendations are generated in the
same way for the same profile. Only the communication channels are different
for different subject groups.

3. Post-Experiment Survey: After their interaction with the system, they
fill out post-experiment survey regarding the quality of the recommendations
and explanations as well as the likability of the interaction.

4. Informal Interviews: At the end of the experiment, participants are in-
terviewed informally to gather qualitative data on their experiences.

Fig. 4: Experiment Procedure

In the experiments, we used a 5-point Likert scale to measure participants’
responses. After collecting the data, we assessed the distribution to determine
the appropriate statistical tests for analysis. Using the Kolmogorov-Smirnov Test
of Normality, we found that our data did not follow a normal distribution. This
lack of normality precludes the use of parametric tests, which generally assume
a normal distribution of data. The previous lead to select Mann-Whitney U
Test, a non-parametric alternative suitable for comparing differences between
two independent groups without assuming normal distribution.

The study was conducted at Özyeğin University and involved 59 participants,
including students and employees. Participation was voluntary, with optional
credits for social sciences students. In order to validate participants’ attention,
we included a question inside the pre-experiment survey that asks, “If you are
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paying attention, please select 2.”. 9 participants failed this test. Moreover, 3
participants had to end the experiment due to personal circumstances. Thus, 47
participants were evaluated for the experiment. Participants were divided into
two groups. The Robot with Tablet group consisted of 25 participants: 15 male,
10 female; 20 bachelor’s, 4 master’s, and 1 PhD student; 9 aged 18-21, 12 aged
22-25, 3 aged 26-30, and 1 aged 36-40; 13 from engineering, 2 from mathematics,
and 10 from social sciences. The Only Tablet group included 22 participants: 13
male, 9 female; 16 bachelor’s, 5 master’s, and 1 PhD student; 7 aged 18-21, 13
aged 22-25, and 2 aged 26-30; 13 from engineering, 1 from mathematics, and 8
from social sciences. The university ethics committee approved the study7.

Finally, Figure 5 presents a histogram analysis of the questionnaire results,
where participants rated factors on a scale from 1 to 5, with 1 indicating the
highest importance. The analysis reveals that, in both groups, the healthiness
of a recipe is considered to be the most vital factor in choosing it (52% for
robot with tablet group and 50% for tablet only group). In contrast, 44% of
participants within the Robot with Tablet group rated ease of preparation as
the least important factor and 36% of the participants voted equally Price and
Easy Preparation to be the least important factor. The users’ priority on the
decision criteria for choosing different recipes are similar for both groups.

(a) Robot with Tablet (b) Tablet Only

Fig. 5: Histogram analysis of the pre-experiment survey for each group

4.3 Results and Discussions

Within the analysis of self-explanatory systems, success is commonly measured
through two categories of metrics: objective and subjective [8]. On one hand,
objective metrics are derived from participants’ actions during their interactions

7 Participant data is anonymized and securely stored. They can withdraw anytime
without consequences. The study follows ethical guidelines to ensure no physical or
psychological harm to participants.
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with the system, including measures like success rate (e.g., percentage of ac-
cepted recipes), number of interaction rounds per session, or feedback during
sessions. Subjective metrics, on the other hand, are gathered from qualitative
data such as the post-experiment surveys (see Figure 8 below), where partici-
pants rate aspects such as perceived effectiveness, satisfaction, and ease of use.
These subjective ratings assess whether the incorporating of the robot affects
the user satisfaction with the recommendations, explanations and the general
working of the system.

First and foremost, we consider the users’ feedback to the system’s recom-
mendation. Recall that the feedback is comprised of any verbal (Robot with
tablet session) or non-verbal (Only tablet session) user response to a given rec-
ommendation, which we take as an indicator of engagement levels across groups.
Meanwhile it is difficult to compare the quality of feedback, we can still consider
the amount of feedback where the higher number means the user is engaged
more with the system since they actively partake. This gives us a quantifiable
measure of user engagement while testing H1. Figure 6 shows the boxplot of
the feedback counts per group. We note that there is a significant statistical dif-
ference between the groups (p = 0.04 < 0.05) where the tablet group provided
more feedback to the system. We observe that the users engaged more in the
Tablet Only group in contrast the Robot with Tablet group, thus satisfying the
H1 (on average, 14.72 vs 6.52 respectively).

Fig. 6: Amount of feedback per type of session

On the other hand, higher acceptance counts could indicate that users find
the recommendations more convincing, so they might be more willing to adopt
them. Acceptance counts are defined as the number of times users explicitly
agree with a food recipe. Ultimately, the comparative study between the groups
would allow us to assess whether physical embodiment affects users’ acceptance
of the system’s recommendations. Our results indicate that the users accepted
68% of the recommendations where as tablet acceptance was 95%. Consequently,
we note that this supports the H2 as we found a significant difference among
the two groups. The acceptance rate and feedback counts could be related to the
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fact that robots are scrutinized by humans since embodiment brings additional
expectations from the system [1]. This could also signal a cognitive load (i.e.,
may get tired from interacting with the robot)and more tendency to terminate
the interaction.

Finally, we consider the number of turns between the groups, as shown in
Figure 7. Here, we define turns as each time a user responds to a recommenda-
tion. As a side observation, we noticed a minor difference between the groups
(p=0.72, 6.76 vs 5.94 interactions on average). This may suggest different en-
gagement levels, potentially influenced by user expectations and the mentioned
cognitive load during interactions.

Fig. 7: Amount of interaction per type of session

Figure 8 illustrates the results of our post-experiment survey questions with
regards to our subjective metrics. We link some of the questions to H3 (Q1,
Q11, Q12, Q13, Q14, and Q16) that assess various aspects of recommendation
satisfaction and personalization between the groups. These questions provide
insights into participants’ perceived relevance and accuracy of the recommen-
dations, which reflects the user satisfaction with the system’s communication
method when compared between the groups. Q1 (p=0.69, on average, 3.73 vs
3.80) gauges initial liking for the recommended items, setting a foundation for
perceived quality, Q11 (p=0.26, 3.36 for the Tablet Only vs 3.76 for the Robot
with Tablet) assesses alignment with the scenario, highlighting satisfaction with
situational appropriateness. Q12 (p=0.54, 3.5 vs 3.68) and Q13 (p=0.20, 3.54
vs 3.92) measure participants’ perceptions of how accurately and personally the
system recognized and incorporated their individual preferences. Finally, Q14
(p=0.24, 3.46 vs 3.76) and Q16 (p=0.03, 3.41 vs 4.08) focus on the perceived
effectiveness of the personalization process, specifically regarding dietary prefer-
ences and constraints. Ultimately, H3 is only partially supported since we found
a significant difference for Q16.

Besides the mentioned questions, we observe no significant difference among
the questions. However, we would like to note that there was a higher average
for the Robot with Tablet group among Q4 (p=0.92, 3.41 vs 3.48), Q5 (p=0.16,
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Q1 I liked the recommended recipes.
Q2 I enjoyed using the recommender system.
Q3 Given interface was comfortable to navigate.
Q4 I liked the explanations that were given.
Q5 I find the given explanations convincing.
Q6 I find the given explanations intuitive.
Q7 The interaction with the recommender was fluent.
Q8 I enjoyed the interaction with the recommender.
Q9 I would like to engage in such an interaction in the future.
Q10 The interaction with the recommender was frustrating for me.
Q11 The recommendations were right for the given scenario.
Q12 Rate the food recommendation system’s ability to recognize your food
preferences accurately.
Q13 Recommendations were personalized according to my preferences.
Q14 Rate the effectiveness of the food recommendation system in personalizing food
recommendations based on your profile.
Q15 What is your opinion about the duration of the experiment?
Q16 How well did the food recommendation system address your specific dietary
preferences and constraints?

Fig. 8: Post-Experiment Survey Results for Only Tablet and Robot with Tablet

2.95 vs 3.44), Q6 (p=0.09, 3.13 vs 3.60). These results could signal that the
explanations had a slightly higher impact among the participants when they
are delivered in an embodied manner. On the other hand, users reported higher
scores in Q2 (p=0.66, 3.73 vs 3.44) and Q3 (p=0.27, 3.45 vs 3.08). The frustration
with the interaction measured by Q10 (p=0.12, 2.18 vs 2.76) and higher average
for the robot supports our finding with the objective metrics. This indicates that
either system was not perceived particularly more interesting than the other.

During our unstructured interviews, it became clear that the design of the
state machine communication in the robot with tablet configuration may cause
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impatience for some participants. This aligned with the survey results for Q10
(Figure 8) where 7 out of 25 participants gave a score of more than 3. The slower
pace of interaction combined with occasional speech recognition issues made
the session seem less fluent compared to the tablet-only configuration. It was
observed that the simple nature of the tablet-only setup made it easy for users
to provide feedback, which explains why engagement remained high. In addition,
some participants struggled to engage with the system due to their varying
levels of English, which may have impacted their ability to fully engage. These
challenges highlight the need for more user-friendly communication strategies
and better support for non-native speakers.

5 Conclusion and Future Work

This study investigated the effects of different communication mediums, a tablet-
only interface, and a robot-enhanced setup on the user experience within a per-
sonalized food recommendation system. Differences were observed in the fre-
quency of user engagement between the two setups, indicating that the choice
of communication medium can significantly impact how actively users partici-
pate in interactions. Acceptance levels also varied across the setups, suggesting
that communication medium influences users’ willingness to adopt the system’s
recommendations. On the other hand, we looked at how users perceived the sys-
tem’s alignment with their preferences and needs, focusing on their satisfaction
with the interaction. The robot-enhanced setup affected user satisfaction min-
imally. Satisfaction remained largely consistent across both setups, suggesting
that physical embodiment alone did not significantly enhance users’ contentment
or sense of alignment with the system’s functionality. These findings emphasize
the importance of selecting suitable communication mediums to optimize user
experience and perceived effectiveness in recommendation systems. Future de-
signs may benefit from simplifying communication flows in embodied setups to
minimize user impatience, enhancing response fluency, and implementing strate-
gies that address language barriers. These improvements could further increase
accessibility and engagement across diverse user backgrounds, supporting the
development of more intuitive and responsive interactive systems.
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and Transparent AI and Multi-Agent Systems - 6th International Workshop,
EXTRAAMAS 2024, Revised Selected Papers, Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lec-
ture Notes in Bioinformatics), pages 58–78, United States, 2024. Springer.

[4] Berk Buzcu, Melissa Tessa, Igor Tchappi, Amro Najjar, Joris Hulstijn, Da-
vide Calvaresi, and Reyhan Aydogan. Towards interactive explanation-
based nutrition virtual coaching systems. Autonomous Agents and Multi-
Agent Systems, 38(5), 2024. https://doi.org/10.1007/s10458-023-09634-5.
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