GridEx: An Algorithm for Knowledge Extraction from Black-Box Regressors

by Federico Sabbatini, Giovanni Ciatto, and Andrea Omicini Abstract Knowledge extraction methods are applied to ML-based predictors to attain explainable representations of their functioning when the lack of interpretable results constitutes a problem. Several algorithms have been proposed for knowledge extraction, mostly focusing on the extraction of either lists or trees of rules. Yet, most of them only support supervised learning – and, in particular, classification – tasks.
Read full post gblog_arrow_right

On the Design of PSyKE: A Platform for Symbolic Knowledge Extraction

by Federico Sabbatini, Giovanni Ciatto, Roberta Calegari, and Andrea Omicini How to access URL: http://ceur-ws.org/Vol-2963/paper14.pdf Abstract A common practice in modern explainable AI is to post-hoc explain black-box machine learning (ML) predictors – such as neural networks – by extracting symbolic knowledge out of them, in the form of either rule lists or decision trees. By acting as a surrogate model, the extracted knowledge aims at revealing the inner working of the black box, thus enabling its inspection, representation, and explanation.
Read full post gblog_arrow_right

Hypercube-Based Methods for Symbolic Knowledge Extraction: Towards a Unified Model

by Federico Sabbatini, Giovanni Ciatto, Roberta Calegari, and Andrea Omicini Abstract Symbolic knowledge-extraction (SKE) algorithms proposed by the XAI community to obtain human-intelligible explanations for opaque machine learning predictors are currently being studied and developed with growing interest, also in order to achieve believability in interactions. However, choosing the most adequate extraction procedure amongst the many existing in the literature is becoming more and more challenging, as the amount of available methods increases.
Read full post gblog_arrow_right

Semantic Web-Based Interoperability for Intelligent Agents with PSyKE

by Federico Sabbatini, Giovanni Ciatto, and Andrea Omicini Abstract Modern distributed systems require communicating agents to agree on a shared, formal semantics for the data they exchange and operate upon. The Semantic Web offers tools to encode semantics in the form of ontologies, where data is represented in the form knowledge graphs (KG). Applying such tools to intelligent agents equipped with machine learning (ML) capabilities is of particular interest, as it may enable a higher degree of interoperability among heterogeneous agents.
Read full post gblog_arrow_right

Symbolic Knowledge Extraction and Injection with Sub-symbolic Predictors: A Systematic Literature Review

by Giovanni Ciatto, Federico Sabbatini, Andrea Agiollo, Matteo Magnini, and Andrea Omicini Abstract In this paper we focus on the issue of opacity of sub-symbolic machine-learning predictors by promoting two complementary activities—namely, symbolic knowledge extraction (SKE) and injection (SKI) from and into sub-symbolic predictors. We consider as symbolic any language being intelligible and interpretable for both humans and computers. Accordingly, we propose general meta-models for both SKE and SKI, along with two taxonomies for the classification of SKE/SKI methods.
Read full post gblog_arrow_right