by Matteo Magnini, Giovanni Ciatto, and Andrea Omicini
Abstract A long-standing ambition in artificial intelligence is to integrate predictors' inductive features (i.e., learning from examples) with deductive capabilities (i.e., drawing inferences from prior symbolic knowledge). Many algorithms methods in the literature support injection of prior symbolic knowledge into predictors, generally following the purpose of attaining better (i.e., more effective or efficient w.r.t. predictive performance) predictors. However, to the best of our knowledge, running implementations of these algorithms are currently either proof of concepts or unavailable in most cases.
by Matteo Magnini, Giovanni Ciatto, and Andrea Omicini
Abstract We propose a novel method to inject symbolic knowledge in form of Datalog formulæ into neural networks (NN), called KINS (Knowledge Injection via Network Structuring). The idea behind our method is to extend NN internal structure with ad-hoc layers built out the injected symbolic knowledge. KINS does not constrain NN to any specific architecture, neither requires logic formulæ to be ground.
by Matteo Magnini, Giovanni Ciatto, and Andrea Omicini
Abstract We propose KILL (Knowledge Injection via Lambda Layer) as a novel method for the injection of symbolic knowledge into neural networks (NN) allowing data scientists to control what the network should (not) learn. Unlike other similar approaches, our method does not (i) require ground input formulae, (ii) impose any constraint on the NN undergoing injection, (iii) affect the loss function of the NN.
by Matteo Magnini, Giovanni Ciatto, Furkan Canturk, Reyhan Aydoğan, and Andrea Omicini
Abstract Background and objective This paper focuses on nutritional recommendation systems (RS), i.e. AI-powered automatic systems providing users with suggestions about what to eat to pursue their weight/body shape goals. A trade-off among (potentially) conflictual requirements must be taken into account when designing these kinds of systems, there including: (i) adherence to experts’ prescriptions, (ii) adherence to users’ tastes and preferences, (iii) explainability of the whole recommendation process.