2P-Kt: A Logic-Based Ecosystem for Symbolic AI

by Giovanni Ciatto, Roberta Calegari, and Andrea Omicini Abstract To date, logic-based technologies are either built on top or as extensions of the Prolog language, mostly working as monolithic solutions tailored upon specific inference procedures, unification mechanisms, or knowledge representation techniques. Instead, to maximise their impact, logic-based technologies should support and enable the general-purpose exploitation of all the manifold contributions from logic programming. Accordingly, we present 2P-Kt, a reboot of the tuProlog project offering a general, extensible, and interoperable ecosystem for logic programming and symbolic AI.
Read full post gblog_arrow_right

Towards cooperative argumentation for MAS: an Actor-based approach

by Giuseppe Pisano, Roberta Calegari, and Andrea Omicini Abstract We discuss the problem of cooperative argumentation in multi-agent systems, focusing on the computational model. An actor-based model is proposed as a first step towards cooperative argumentation in multi-agent systems to tackle distribution issues—illustrating a preliminary fully-distributed version of the argumentation process completely based on message passing. How to access URL: http://ceur-ws.org/Vol-2963/paper17.pdf How to cite Bibtex @inproceedings{distributedarg-woa2021, author = {Pisano, Giuseppe and Calegari, Roberta and Omicini, Andrea}, booktitle = {WOA 2021 -- 22nd Workshop ``From Objects to Agents''}, editor = {Calegari, Roberta and Ciatto, Giovanni and Denti, Enrico and Omicini, Andrea and Sartor, Giovanni}, issn = {1613-0073}, keywords = {Argumentation, MAS, cooperative argumentation, distributed argumentation process}, location = {Bologna, Italy}, month = oct, note = {22nd Workshop ``From Objects to Agents'' (WOA 2021), Bologna, Italy, 1--3~} # sep # {~2021.
Read full post gblog_arrow_right

Towards cooperative argumentation for MAS: An actor-based approach

by Giuseppe Pisano, Roberta Calegari, and Andrea Omicini Abstract We discuss the problem of cooperative argumentation in multi-agent systems, focusing on the computational model. An actor-based model is proposed as a first step towards cooperative argumentation in multi-agent systems to tackle distribution issues—illustrating a preliminary fully-distributed version of the argumentation process completely based on message passing. How to access URL: http://ceur-ws.org/Vol-2963/paper17.pdf How to cite Bibtex @inproceedings{distributedarg-woa2021, articleno = 12, author = {Pisano, Giuseppe and Calegari, Roberta and Omicini, Andrea}, booktitle = {WOA 2021 -- 22nd Workshop ``From Objects to Agents''}, dblp = {conf/woa/PisanoCO21}, editor = {Calegari, Roberta and Ciatto, Giovanni and Denti, Enrico and Omicini, Andrea and Sartor, Giovanni}, iris = {11585/834366}, issn = {1613-0073}, keywords = {Argumentation, MAS, cooperative argumentation, distributed argumentation process}, location = {Bologna, Italy}, month = oct, note = {22nd Workshop ``From Objects to Agents'' (WOA 2021), Bologna, Italy, 1--3~} # sep # {~2021.
Read full post gblog_arrow_right

Hypercube-Based Methods for Symbolic Knowledge Extraction: Towards a Unified Model

by Federico Sabbatini, Giovanni Ciatto, Roberta Calegari, and Andrea Omicini Abstract Symbolic knowledge-extraction (SKE) algorithms proposed by the XAI community to obtain human-intelligible explanations for opaque machine learning predictors are currently being studied and developed with growing interest, also in order to achieve believability in interactions. However, choosing the most adequate extraction procedure amongst the many existing in the literature is becoming more and more challenging, as the amount of available methods increases.
Read full post gblog_arrow_right

On the Design of PSyKI: a Platform for Symbolic Knowledge Injection into Sub-Symbolic Predictors

by Matteo Magnini, Giovanni Ciatto, and Andrea Omicini Abstract A long-standing ambition in artificial intelligence is to integrate predictors' inductive features (i.e., learning from examples) with deductive capabilities (i.e., drawing inferences from prior symbolic knowledge). Many algorithms methods in the literature support injection of prior symbolic knowledge into predictors, generally following the purpose of attaining better (i.e., more effective or efficient w.r.t. predictive performance) predictors. However, to the best of our knowledge, running implementations of these algorithms are currently either proof of concepts or unavailable in most cases.
Read full post gblog_arrow_right